ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzouzsplit Unicode version

Theorem fzouzsplit 9987
Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
fzouzsplit  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  =  ( ( A..^ B )  u.  ( ZZ>= `  B
) ) )

Proof of Theorem fzouzsplit
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eluzelz 9359 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
2 eluzelz 9359 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  A
)  ->  x  e.  ZZ )
3 zlelttric 9123 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  x  e.  ZZ )  ->  ( B  <_  x  \/  x  <  B ) )
41, 2, 3syl2an 287 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( B  <_  x  \/  x  < 
B ) )
54orcomd 719 . . . . . 6  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  <  B  \/  B  <_  x ) )
6 id 19 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  A
)  ->  x  e.  ( ZZ>= `  A )
)
7 elfzo2 9958 . . . . . . . . . 10  |-  ( x  e.  ( A..^ B
)  <->  ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ  /\  x  <  B ) )
8 df-3an 965 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ  /\  x  < 
B )  <->  ( (
x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ )  /\  x  <  B ) )
97, 8bitri 183 . . . . . . . . 9  |-  ( x  e.  ( A..^ B
)  <->  ( ( x  e.  ( ZZ>= `  A
)  /\  B  e.  ZZ )  /\  x  <  B ) )
109baib 905 . . . . . . . 8  |-  ( ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ )  ->  (
x  e.  ( A..^ B )  <->  x  <  B ) )
116, 1, 10syl2anr 288 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( A..^ B )  <-> 
x  <  B )
)
12 eluz 9363 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  x  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  B )  <->  B  <_  x ) )
131, 2, 12syl2an 287 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( ZZ>= `  B )  <->  B  <_  x ) )
1411, 13orbi12d 783 . . . . . 6  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( (
x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B )
)  <->  ( x  < 
B  \/  B  <_  x ) ) )
155, 14mpbird 166 . . . . 5  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( A..^ B )  \/  x  e.  (
ZZ>= `  B ) ) )
1615ex 114 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( x  e.  ( ZZ>= `  A )  ->  ( x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B ) ) ) )
17 elun 3222 . . . 4  |-  ( x  e.  ( ( A..^ B )  u.  ( ZZ>=
`  B ) )  <-> 
( x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B ) ) )
1816, 17syl6ibr 161 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( x  e.  ( ZZ>= `  A )  ->  x  e.  ( ( A..^ B )  u.  ( ZZ>= `  B )
) ) )
1918ssrdv 3108 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  C_  (
( A..^ B )  u.  ( ZZ>= `  B
) ) )
20 elfzouz 9959 . . . . 5  |-  ( x  e.  ( A..^ B
)  ->  x  e.  ( ZZ>= `  A )
)
2120ssriv 3106 . . . 4  |-  ( A..^ B )  C_  ( ZZ>=
`  A )
2221a1i 9 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ B )  C_  ( ZZ>=
`  A ) )
23 uzss 9370 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  B )  C_  ( ZZ>=
`  A ) )
2422, 23unssd 3257 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( A..^ B )  u.  ( ZZ>=
`  B ) ) 
C_  ( ZZ>= `  A
) )
2519, 24eqssd 3119 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  =  ( ( A..^ B )  u.  ( ZZ>= `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1332    e. wcel 1481    u. cun 3074    C_ wss 3076   class class class wbr 3937   ` cfv 5131  (class class class)co 5782    < clt 7824    <_ cle 7825   ZZcz 9078   ZZ>=cuz 9350  ..^cfzo 9950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-fzo 9951
This theorem is referenced by:  zsupcllemstep  11674
  Copyright terms: Public domain W3C validator