ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzouzsplit Unicode version

Theorem fzouzsplit 9555
Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
fzouzsplit  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  =  ( ( A..^ B )  u.  ( ZZ>= `  B
) ) )

Proof of Theorem fzouzsplit
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eluzelz 8997 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
2 eluzelz 8997 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  A
)  ->  x  e.  ZZ )
3 zlelttric 8765 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  x  e.  ZZ )  ->  ( B  <_  x  \/  x  <  B ) )
41, 2, 3syl2an 283 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( B  <_  x  \/  x  < 
B ) )
54orcomd 683 . . . . . 6  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  <  B  \/  B  <_  x ) )
6 id 19 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  A
)  ->  x  e.  ( ZZ>= `  A )
)
7 elfzo2 9526 . . . . . . . . . 10  |-  ( x  e.  ( A..^ B
)  <->  ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ  /\  x  <  B ) )
8 df-3an 926 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ  /\  x  < 
B )  <->  ( (
x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ )  /\  x  <  B ) )
97, 8bitri 182 . . . . . . . . 9  |-  ( x  e.  ( A..^ B
)  <->  ( ( x  e.  ( ZZ>= `  A
)  /\  B  e.  ZZ )  /\  x  <  B ) )
109baib 866 . . . . . . . 8  |-  ( ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ )  ->  (
x  e.  ( A..^ B )  <->  x  <  B ) )
116, 1, 10syl2anr 284 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( A..^ B )  <-> 
x  <  B )
)
12 eluz 9001 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  x  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  B )  <->  B  <_  x ) )
131, 2, 12syl2an 283 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( ZZ>= `  B )  <->  B  <_  x ) )
1411, 13orbi12d 742 . . . . . 6  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( (
x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B )
)  <->  ( x  < 
B  \/  B  <_  x ) ) )
155, 14mpbird 165 . . . . 5  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( A..^ B )  \/  x  e.  (
ZZ>= `  B ) ) )
1615ex 113 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( x  e.  ( ZZ>= `  A )  ->  ( x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B ) ) ) )
17 elun 3139 . . . 4  |-  ( x  e.  ( ( A..^ B )  u.  ( ZZ>=
`  B ) )  <-> 
( x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B ) ) )
1816, 17syl6ibr 160 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( x  e.  ( ZZ>= `  A )  ->  x  e.  ( ( A..^ B )  u.  ( ZZ>= `  B )
) ) )
1918ssrdv 3029 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  C_  (
( A..^ B )  u.  ( ZZ>= `  B
) ) )
20 elfzouz 9527 . . . . 5  |-  ( x  e.  ( A..^ B
)  ->  x  e.  ( ZZ>= `  A )
)
2120ssriv 3027 . . . 4  |-  ( A..^ B )  C_  ( ZZ>=
`  A )
2221a1i 9 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ B )  C_  ( ZZ>=
`  A ) )
23 uzss 9008 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  B )  C_  ( ZZ>=
`  A ) )
2422, 23unssd 3174 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( A..^ B )  u.  ( ZZ>=
`  B ) ) 
C_  ( ZZ>= `  A
) )
2519, 24eqssd 3040 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  =  ( ( A..^ B )  u.  ( ZZ>= `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    /\ w3a 924    = wceq 1289    e. wcel 1438    u. cun 2995    C_ wss 2997   class class class wbr 3837   ` cfv 5002  (class class class)co 5634    < clt 7501    <_ cle 7502   ZZcz 8720   ZZ>=cuz 8988  ..^cfzo 9518
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989  df-fz 9394  df-fzo 9519
This theorem is referenced by:  zsupcllemstep  11023
  Copyright terms: Public domain W3C validator