ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzouzsplit Unicode version

Theorem fzouzsplit 10255
Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016.)
Assertion
Ref Expression
fzouzsplit  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  =  ( ( A..^ B )  u.  ( ZZ>= `  B
) ) )

Proof of Theorem fzouzsplit
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eluzelz 9610 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
2 eluzelz 9610 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  A
)  ->  x  e.  ZZ )
3 zlelttric 9371 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  x  e.  ZZ )  ->  ( B  <_  x  \/  x  <  B ) )
41, 2, 3syl2an 289 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( B  <_  x  \/  x  < 
B ) )
54orcomd 730 . . . . . 6  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  <  B  \/  B  <_  x ) )
6 id 19 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  A
)  ->  x  e.  ( ZZ>= `  A )
)
7 elfzo2 10225 . . . . . . . . . 10  |-  ( x  e.  ( A..^ B
)  <->  ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ  /\  x  <  B ) )
8 df-3an 982 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ  /\  x  < 
B )  <->  ( (
x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ )  /\  x  <  B ) )
97, 8bitri 184 . . . . . . . . 9  |-  ( x  e.  ( A..^ B
)  <->  ( ( x  e.  ( ZZ>= `  A
)  /\  B  e.  ZZ )  /\  x  <  B ) )
109baib 920 . . . . . . . 8  |-  ( ( x  e.  ( ZZ>= `  A )  /\  B  e.  ZZ )  ->  (
x  e.  ( A..^ B )  <->  x  <  B ) )
116, 1, 10syl2anr 290 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( A..^ B )  <-> 
x  <  B )
)
12 eluz 9614 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  x  e.  ZZ )  ->  ( x  e.  (
ZZ>= `  B )  <->  B  <_  x ) )
131, 2, 12syl2an 289 . . . . . . 7  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( ZZ>= `  B )  <->  B  <_  x ) )
1411, 13orbi12d 794 . . . . . 6  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( (
x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B )
)  <->  ( x  < 
B  \/  B  <_  x ) ) )
155, 14mpbird 167 . . . . 5  |-  ( ( B  e.  ( ZZ>= `  A )  /\  x  e.  ( ZZ>= `  A )
)  ->  ( x  e.  ( A..^ B )  \/  x  e.  (
ZZ>= `  B ) ) )
1615ex 115 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( x  e.  ( ZZ>= `  A )  ->  ( x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B ) ) ) )
17 elun 3304 . . . 4  |-  ( x  e.  ( ( A..^ B )  u.  ( ZZ>=
`  B ) )  <-> 
( x  e.  ( A..^ B )  \/  x  e.  ( ZZ>= `  B ) ) )
1816, 17imbitrrdi 162 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( x  e.  ( ZZ>= `  A )  ->  x  e.  ( ( A..^ B )  u.  ( ZZ>= `  B )
) ) )
1918ssrdv 3189 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  C_  (
( A..^ B )  u.  ( ZZ>= `  B
) ) )
20 elfzouz 10226 . . . . 5  |-  ( x  e.  ( A..^ B
)  ->  x  e.  ( ZZ>= `  A )
)
2120ssriv 3187 . . . 4  |-  ( A..^ B )  C_  ( ZZ>=
`  A )
2221a1i 9 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ B )  C_  ( ZZ>=
`  A ) )
23 uzss 9622 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  B )  C_  ( ZZ>=
`  A ) )
2422, 23unssd 3339 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( A..^ B )  u.  ( ZZ>=
`  B ) ) 
C_  ( ZZ>= `  A
) )
2519, 24eqssd 3200 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ZZ>= `  A )  =  ( ( A..^ B )  u.  ( ZZ>= `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167    u. cun 3155    C_ wss 3157   class class class wbr 4033   ` cfv 5258  (class class class)co 5922    < clt 8061    <_ cle 8062   ZZcz 9326   ZZ>=cuz 9601  ..^cfzo 10217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218
This theorem is referenced by:  zsupcllemstep  10319  xnn0nnen  10529
  Copyright terms: Public domain W3C validator