ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzosplit Unicode version

Theorem fzosplit 9584
Description: Split a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzosplit  |-  ( D  e.  ( B ... C )  ->  ( B..^ C )  =  ( ( B..^ D )  u.  ( D..^ C
) ) )

Proof of Theorem fzosplit
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 108 . . . . . 6  |-  ( ( D  e.  ( B ... C )  /\  x  e.  ( B..^ C ) )  ->  x  e.  ( B..^ C ) )
2 elfzelz 9438 . . . . . . 7  |-  ( D  e.  ( B ... C )  ->  D  e.  ZZ )
32adantr 270 . . . . . 6  |-  ( ( D  e.  ( B ... C )  /\  x  e.  ( B..^ C ) )  ->  D  e.  ZZ )
4 fzospliti 9583 . . . . . 6  |-  ( ( x  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
x  e.  ( B..^ D )  \/  x  e.  ( D..^ C ) ) )
51, 3, 4syl2anc 403 . . . . 5  |-  ( ( D  e.  ( B ... C )  /\  x  e.  ( B..^ C ) )  -> 
( x  e.  ( B..^ D )  \/  x  e.  ( D..^ C ) ) )
6 elun 3141 . . . . 5  |-  ( x  e.  ( ( B..^ D )  u.  ( D..^ C ) )  <->  ( x  e.  ( B..^ D )  \/  x  e.  ( D..^ C ) ) )
75, 6sylibr 132 . . . 4  |-  ( ( D  e.  ( B ... C )  /\  x  e.  ( B..^ C ) )  ->  x  e.  ( ( B..^ D )  u.  ( D..^ C ) ) )
87ex 113 . . 3  |-  ( D  e.  ( B ... C )  ->  (
x  e.  ( B..^ C )  ->  x  e.  ( ( B..^ D
)  u.  ( D..^ C ) ) ) )
98ssrdv 3031 . 2  |-  ( D  e.  ( B ... C )  ->  ( B..^ C )  C_  (
( B..^ D )  u.  ( D..^ C
) ) )
10 elfzuz3 9435 . . . 4  |-  ( D  e.  ( B ... C )  ->  C  e.  ( ZZ>= `  D )
)
11 fzoss2 9579 . . . 4  |-  ( C  e.  ( ZZ>= `  D
)  ->  ( B..^ D )  C_  ( B..^ C ) )
1210, 11syl 14 . . 3  |-  ( D  e.  ( B ... C )  ->  ( B..^ D )  C_  ( B..^ C ) )
13 elfzuz 9434 . . . 4  |-  ( D  e.  ( B ... C )  ->  D  e.  ( ZZ>= `  B )
)
14 fzoss1 9578 . . . 4  |-  ( D  e.  ( ZZ>= `  B
)  ->  ( D..^ C )  C_  ( B..^ C ) )
1513, 14syl 14 . . 3  |-  ( D  e.  ( B ... C )  ->  ( D..^ C )  C_  ( B..^ C ) )
1612, 15unssd 3176 . 2  |-  ( D  e.  ( B ... C )  ->  (
( B..^ D )  u.  ( D..^ C
) )  C_  ( B..^ C ) )
179, 16eqssd 3042 1  |-  ( D  e.  ( B ... C )  ->  ( B..^ C )  =  ( ( B..^ D )  u.  ( D..^ C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    \/ wo 664    = wceq 1289    e. wcel 1438    u. cun 2997    C_ wss 2999   ` cfv 5015  (class class class)co 5652   ZZcz 8748   ZZ>=cuz 9017   ...cfz 9422  ..^cfzo 9549
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-addass 7445  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-inn 8421  df-n0 8672  df-z 8749  df-uz 9018  df-fz 9423  df-fzo 9550
This theorem is referenced by:  fzosplitsnm1  9616  fzo0to42pr  9627  fzo0sn0fzo1  9628  fzosplitsn  9640
  Copyright terms: Public domain W3C validator