ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2fveq3 Unicode version

Theorem 2fveq3 5632
Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.)
Assertion
Ref Expression
2fveq3  |-  ( A  =  B  ->  ( F `  ( G `  A ) )  =  ( F `  ( G `  B )
) )

Proof of Theorem 2fveq3
StepHypRef Expression
1 fveq2 5627 . 2  |-  ( A  =  B  ->  ( G `  A )  =  ( G `  B ) )
21fveq2d 5631 1  |-  ( A  =  B  ->  ( F `  ( G `  A ) )  =  ( F `  ( G `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326
This theorem is referenced by:  difinfsnlem  7266  ctssdclemn0  7277  cc2  7453  seq3f1olemqsum  10735  seq3f1oleml  10738  seq3f1o  10739  seq3homo  10749  seqhomog  10752  seq3coll  11064  fsumf1o  11901  iserabs  11986  explecnv  12016  cvgratnnlemnexp  12035  cvgratnnlemmn  12036  fprodf1o  12099  nninfctlemfo  12561  alginv  12569  algcvg  12570  algcvga  12573  ctiunctlemu1st  13005  ctiunctlemu2nd  13006  ctiunctlemudc  13008  ctiunctlemfo  13010  prdsbasprj  13315  prdsplusgfval  13317  prdsmulrfval  13319  prdsbas3  13320  prdsinvlem  13641  isunitd  14070  wkslem1  16033  wkslem2  16034  subctctexmid  16366
  Copyright terms: Public domain W3C validator