| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2fveq3 | Unicode version | ||
| Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.) |
| Ref | Expression |
|---|---|
| 2fveq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5599 |
. 2
| |
| 2 | 1 | fveq2d 5603 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 |
| This theorem is referenced by: difinfsnlem 7227 ctssdclemn0 7238 cc2 7414 seq3f1olemqsum 10695 seq3f1oleml 10698 seq3f1o 10699 seq3homo 10709 seqhomog 10712 seq3coll 11024 fsumf1o 11816 iserabs 11901 explecnv 11931 cvgratnnlemnexp 11950 cvgratnnlemmn 11951 fprodf1o 12014 nninfctlemfo 12476 alginv 12484 algcvg 12485 algcvga 12488 ctiunctlemu1st 12920 ctiunctlemu2nd 12921 ctiunctlemudc 12923 ctiunctlemfo 12925 prdsbasprj 13229 prdsplusgfval 13231 prdsmulrfval 13233 prdsbas3 13234 prdsinvlem 13555 isunitd 13983 subctctexmid 16139 |
| Copyright terms: Public domain | W3C validator |