| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2fveq3 | Unicode version | ||
| Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.) |
| Ref | Expression |
|---|---|
| 2fveq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5578 |
. 2
| |
| 2 | 1 | fveq2d 5582 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 |
| This theorem is referenced by: difinfsnlem 7203 ctssdclemn0 7214 cc2 7381 seq3f1olemqsum 10660 seq3f1oleml 10663 seq3f1o 10664 seq3homo 10674 seqhomog 10677 seq3coll 10989 fsumf1o 11734 iserabs 11819 explecnv 11849 cvgratnnlemnexp 11868 cvgratnnlemmn 11869 fprodf1o 11932 nninfctlemfo 12394 alginv 12402 algcvg 12403 algcvga 12406 ctiunctlemu1st 12838 ctiunctlemu2nd 12839 ctiunctlemudc 12841 ctiunctlemfo 12843 prdsbasprj 13147 prdsplusgfval 13149 prdsmulrfval 13151 prdsbas3 13152 prdsinvlem 13473 isunitd 13901 subctctexmid 15974 |
| Copyright terms: Public domain | W3C validator |