ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2fveq3 Unicode version

Theorem 2fveq3 5583
Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.)
Assertion
Ref Expression
2fveq3  |-  ( A  =  B  ->  ( F `  ( G `  A ) )  =  ( F `  ( G `  B )
) )

Proof of Theorem 2fveq3
StepHypRef Expression
1 fveq2 5578 . 2  |-  ( A  =  B  ->  ( G `  A )  =  ( G `  B ) )
21fveq2d 5582 1  |-  ( A  =  B  ->  ( F `  ( G `  A ) )  =  ( F `  ( G `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-iota 5233  df-fv 5280
This theorem is referenced by:  difinfsnlem  7203  ctssdclemn0  7214  cc2  7381  seq3f1olemqsum  10660  seq3f1oleml  10663  seq3f1o  10664  seq3homo  10674  seqhomog  10677  seq3coll  10989  fsumf1o  11734  iserabs  11819  explecnv  11849  cvgratnnlemnexp  11868  cvgratnnlemmn  11869  fprodf1o  11932  nninfctlemfo  12394  alginv  12402  algcvg  12403  algcvga  12406  ctiunctlemu1st  12838  ctiunctlemu2nd  12839  ctiunctlemudc  12841  ctiunctlemfo  12843  prdsbasprj  13147  prdsplusgfval  13149  prdsmulrfval  13151  prdsbas3  13152  prdsinvlem  13473  isunitd  13901  subctctexmid  15974
  Copyright terms: Public domain W3C validator