ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2fveq3 Unicode version

Theorem 2fveq3 5560
Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.)
Assertion
Ref Expression
2fveq3  |-  ( A  =  B  ->  ( F `  ( G `  A ) )  =  ( F `  ( G `  B )
) )

Proof of Theorem 2fveq3
StepHypRef Expression
1 fveq2 5555 . 2  |-  ( A  =  B  ->  ( G `  A )  =  ( G `  B ) )
21fveq2d 5559 1  |-  ( A  =  B  ->  ( F `  ( G `  A ) )  =  ( F `  ( G `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263
This theorem is referenced by:  difinfsnlem  7160  ctssdclemn0  7171  cc2  7329  seq3f1olemqsum  10587  seq3f1oleml  10590  seq3f1o  10591  seq3homo  10601  seqhomog  10604  seq3coll  10916  fsumf1o  11536  iserabs  11621  explecnv  11651  cvgratnnlemnexp  11670  cvgratnnlemmn  11671  fprodf1o  11734  nninfctlemfo  12180  alginv  12188  algcvg  12189  algcvga  12192  ctiunctlemu1st  12594  ctiunctlemu2nd  12595  ctiunctlemudc  12597  ctiunctlemfo  12599  isunitd  13605  subctctexmid  15561
  Copyright terms: Public domain W3C validator