Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2fveq3 | Unicode version |
Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.) |
Ref | Expression |
---|---|
2fveq3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5486 | . 2 | |
2 | 1 | fveq2d 5490 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 |
This theorem is referenced by: difinfsnlem 7064 ctssdclemn0 7075 cc2 7208 seq3f1olemqsum 10435 seq3f1oleml 10438 seq3f1o 10439 seq3homo 10445 seq3coll 10755 fsumf1o 11331 iserabs 11416 explecnv 11446 cvgratnnlemnexp 11465 cvgratnnlemmn 11466 fprodf1o 11529 alginv 11979 algcvg 11980 algcvga 11983 ctiunctlemu1st 12367 ctiunctlemu2nd 12368 ctiunctlemudc 12370 ctiunctlemfo 12372 subctctexmid 13881 |
Copyright terms: Public domain | W3C validator |