ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2fveq3 Unicode version

Theorem 2fveq3 5559
Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.)
Assertion
Ref Expression
2fveq3  |-  ( A  =  B  ->  ( F `  ( G `  A ) )  =  ( F `  ( G `  B )
) )

Proof of Theorem 2fveq3
StepHypRef Expression
1 fveq2 5554 . 2  |-  ( A  =  B  ->  ( G `  A )  =  ( G `  B ) )
21fveq2d 5558 1  |-  ( A  =  B  ->  ( F `  ( G `  A ) )  =  ( F `  ( G `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262
This theorem is referenced by:  difinfsnlem  7158  ctssdclemn0  7169  cc2  7327  seq3f1olemqsum  10584  seq3f1oleml  10587  seq3f1o  10588  seq3homo  10598  seqhomog  10601  seq3coll  10913  fsumf1o  11533  iserabs  11618  explecnv  11648  cvgratnnlemnexp  11667  cvgratnnlemmn  11668  fprodf1o  11731  nninfctlemfo  12177  alginv  12185  algcvg  12186  algcvga  12189  ctiunctlemu1st  12591  ctiunctlemu2nd  12592  ctiunctlemudc  12594  ctiunctlemfo  12596  isunitd  13602  subctctexmid  15491
  Copyright terms: Public domain W3C validator