ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2fveq3 Unicode version

Theorem 2fveq3 5604
Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.)
Assertion
Ref Expression
2fveq3  |-  ( A  =  B  ->  ( F `  ( G `  A ) )  =  ( F `  ( G `  B )
) )

Proof of Theorem 2fveq3
StepHypRef Expression
1 fveq2 5599 . 2  |-  ( A  =  B  ->  ( G `  A )  =  ( G `  B ) )
21fveq2d 5603 1  |-  ( A  =  B  ->  ( F `  ( G `  A ) )  =  ( F `  ( G `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298
This theorem is referenced by:  difinfsnlem  7227  ctssdclemn0  7238  cc2  7414  seq3f1olemqsum  10695  seq3f1oleml  10698  seq3f1o  10699  seq3homo  10709  seqhomog  10712  seq3coll  11024  fsumf1o  11816  iserabs  11901  explecnv  11931  cvgratnnlemnexp  11950  cvgratnnlemmn  11951  fprodf1o  12014  nninfctlemfo  12476  alginv  12484  algcvg  12485  algcvga  12488  ctiunctlemu1st  12920  ctiunctlemu2nd  12921  ctiunctlemudc  12923  ctiunctlemfo  12925  prdsbasprj  13229  prdsplusgfval  13231  prdsmulrfval  13233  prdsbas3  13234  prdsinvlem  13555  isunitd  13983  subctctexmid  16139
  Copyright terms: Public domain W3C validator