| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2fveq3 | Unicode version | ||
| Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.) |
| Ref | Expression |
|---|---|
| 2fveq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5627 |
. 2
| |
| 2 | 1 | fveq2d 5631 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 |
| This theorem is referenced by: difinfsnlem 7266 ctssdclemn0 7277 cc2 7453 seq3f1olemqsum 10735 seq3f1oleml 10738 seq3f1o 10739 seq3homo 10749 seqhomog 10752 seq3coll 11064 fsumf1o 11901 iserabs 11986 explecnv 12016 cvgratnnlemnexp 12035 cvgratnnlemmn 12036 fprodf1o 12099 nninfctlemfo 12561 alginv 12569 algcvg 12570 algcvga 12573 ctiunctlemu1st 13005 ctiunctlemu2nd 13006 ctiunctlemudc 13008 ctiunctlemfo 13010 prdsbasprj 13315 prdsplusgfval 13317 prdsmulrfval 13319 prdsbas3 13320 prdsinvlem 13641 isunitd 14070 wkslem1 16033 wkslem2 16034 subctctexmid 16366 |
| Copyright terms: Public domain | W3C validator |