![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2fveq3 | Unicode version |
Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.) |
Ref | Expression |
---|---|
2fveq3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5554 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | fveq2d 5558 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 |
This theorem is referenced by: difinfsnlem 7158 ctssdclemn0 7169 cc2 7327 seq3f1olemqsum 10584 seq3f1oleml 10587 seq3f1o 10588 seq3homo 10598 seqhomog 10601 seq3coll 10913 fsumf1o 11533 iserabs 11618 explecnv 11648 cvgratnnlemnexp 11667 cvgratnnlemmn 11668 fprodf1o 11731 nninfctlemfo 12177 alginv 12185 algcvg 12186 algcvga 12189 ctiunctlemu1st 12591 ctiunctlemu2nd 12592 ctiunctlemudc 12594 ctiunctlemfo 12596 isunitd 13602 subctctexmid 15491 |
Copyright terms: Public domain | W3C validator |