ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcan2m Unicode version

Theorem xpcan2m 5169
Description: Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpcan2m  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  =  ( B  X.  C )  <-> 
A  =  B ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem xpcan2m
StepHypRef Expression
1 ssxp1 5165 . . 3  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  C_  ( B  X.  C )  <->  A  C_  B
) )
2 ssxp1 5165 . . 3  |-  ( E. x  x  e.  C  ->  ( ( B  X.  C )  C_  ( A  X.  C )  <->  B  C_  A
) )
31, 2anbi12d 473 . 2  |-  ( E. x  x  e.  C  ->  ( ( ( A  X.  C )  C_  ( B  X.  C
)  /\  ( B  X.  C )  C_  ( A  X.  C ) )  <-> 
( A  C_  B  /\  B  C_  A ) ) )
4 eqss 3239 . 2  |-  ( ( A  X.  C )  =  ( B  X.  C )  <->  ( ( A  X.  C )  C_  ( B  X.  C
)  /\  ( B  X.  C )  C_  ( A  X.  C ) ) )
5 eqss 3239 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
63, 4, 53bitr4g 223 1  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  =  ( B  X.  C )  <-> 
A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200    C_ wss 3197    X. cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-dm 4729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator