ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcan2m Unicode version

Theorem xpcan2m 5106
Description: Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpcan2m  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  =  ( B  X.  C )  <-> 
A  =  B ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem xpcan2m
StepHypRef Expression
1 ssxp1 5102 . . 3  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  C_  ( B  X.  C )  <->  A  C_  B
) )
2 ssxp1 5102 . . 3  |-  ( E. x  x  e.  C  ->  ( ( B  X.  C )  C_  ( A  X.  C )  <->  B  C_  A
) )
31, 2anbi12d 473 . 2  |-  ( E. x  x  e.  C  ->  ( ( ( A  X.  C )  C_  ( B  X.  C
)  /\  ( B  X.  C )  C_  ( A  X.  C ) )  <-> 
( A  C_  B  /\  B  C_  A ) ) )
4 eqss 3194 . 2  |-  ( ( A  X.  C )  =  ( B  X.  C )  <->  ( ( A  X.  C )  C_  ( B  X.  C
)  /\  ( B  X.  C )  C_  ( A  X.  C ) ) )
5 eqss 3194 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
63, 4, 53bitr4g 223 1  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  =  ( B  X.  C )  <-> 
A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164    C_ wss 3153    X. cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-dm 4669
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator