ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxp1 Unicode version

Theorem ssxp1 5040
Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
ssxp1  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  C_  ( B  X.  C )  <->  A  C_  B
) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem ssxp1
StepHypRef Expression
1 dmxpm 4824 . . . . . 6  |-  ( E. x  x  e.  C  ->  dom  ( A  X.  C )  =  A )
21adantr 274 . . . . 5  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  dom  ( A  X.  C
)  =  A )
3 dmss 4803 . . . . . 6  |-  ( ( A  X.  C ) 
C_  ( B  X.  C )  ->  dom  ( A  X.  C
)  C_  dom  ( B  X.  C ) )
43adantl 275 . . . . 5  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  dom  ( A  X.  C
)  C_  dom  ( B  X.  C ) )
52, 4eqsstrrd 3179 . . . 4  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  A  C_ 
dom  ( B  X.  C ) )
6 dmxpss 5034 . . . 4  |-  dom  ( B  X.  C )  C_  B
75, 6sstrdi 3154 . . 3  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  A  C_  B )
87ex 114 . 2  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  C_  ( B  X.  C )  ->  A  C_  B ) )
9 xpss1 4714 . 2  |-  ( A 
C_  B  ->  ( A  X.  C )  C_  ( B  X.  C
) )
108, 9impbid1 141 1  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  C_  ( B  X.  C )  <->  A  C_  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136    C_ wss 3116    X. cxp 4602   dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-dm 4614
This theorem is referenced by:  xpcan2m  5044
  Copyright terms: Public domain W3C validator