ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxp1 Unicode version

Theorem ssxp1 5138
Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
ssxp1  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  C_  ( B  X.  C )  <->  A  C_  B
) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem ssxp1
StepHypRef Expression
1 dmxpm 4917 . . . . . 6  |-  ( E. x  x  e.  C  ->  dom  ( A  X.  C )  =  A )
21adantr 276 . . . . 5  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  dom  ( A  X.  C
)  =  A )
3 dmss 4896 . . . . . 6  |-  ( ( A  X.  C ) 
C_  ( B  X.  C )  ->  dom  ( A  X.  C
)  C_  dom  ( B  X.  C ) )
43adantl 277 . . . . 5  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  dom  ( A  X.  C
)  C_  dom  ( B  X.  C ) )
52, 4eqsstrrd 3238 . . . 4  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  A  C_ 
dom  ( B  X.  C ) )
6 dmxpss 5132 . . . 4  |-  dom  ( B  X.  C )  C_  B
75, 6sstrdi 3213 . . 3  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  A  C_  B )
87ex 115 . 2  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  C_  ( B  X.  C )  ->  A  C_  B ) )
9 xpss1 4803 . 2  |-  ( A 
C_  B  ->  ( A  X.  C )  C_  ( B  X.  C
) )
108, 9impbid1 142 1  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  C_  ( B  X.  C )  <->  A  C_  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E.wex 1516    e. wcel 2178    C_ wss 3174    X. cxp 4691   dom cdm 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-dm 4703
This theorem is referenced by:  xpcan2m  5142
  Copyright terms: Public domain W3C validator