ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxp1 Unicode version

Theorem ssxp1 5067
Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
ssxp1  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  C_  ( B  X.  C )  <->  A  C_  B
) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem ssxp1
StepHypRef Expression
1 dmxpm 4849 . . . . . 6  |-  ( E. x  x  e.  C  ->  dom  ( A  X.  C )  =  A )
21adantr 276 . . . . 5  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  dom  ( A  X.  C
)  =  A )
3 dmss 4828 . . . . . 6  |-  ( ( A  X.  C ) 
C_  ( B  X.  C )  ->  dom  ( A  X.  C
)  C_  dom  ( B  X.  C ) )
43adantl 277 . . . . 5  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  dom  ( A  X.  C
)  C_  dom  ( B  X.  C ) )
52, 4eqsstrrd 3194 . . . 4  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  A  C_ 
dom  ( B  X.  C ) )
6 dmxpss 5061 . . . 4  |-  dom  ( B  X.  C )  C_  B
75, 6sstrdi 3169 . . 3  |-  ( ( E. x  x  e.  C  /\  ( A  X.  C )  C_  ( B  X.  C
) )  ->  A  C_  B )
87ex 115 . 2  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  C_  ( B  X.  C )  ->  A  C_  B ) )
9 xpss1 4738 . 2  |-  ( A 
C_  B  ->  ( A  X.  C )  C_  ( B  X.  C
) )
108, 9impbid1 142 1  |-  ( E. x  x  e.  C  ->  ( ( A  X.  C )  C_  ( B  X.  C )  <->  A  C_  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148    C_ wss 3131    X. cxp 4626   dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-dm 4638
This theorem is referenced by:  xpcan2m  5071
  Copyright terms: Public domain W3C validator