![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpcan2m | GIF version |
Description: Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.) |
Ref | Expression |
---|---|
xpcan2m | ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssxp1 5077 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴 ⊆ 𝐵)) | |
2 | ssxp1 5077 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐵 × 𝐶) ⊆ (𝐴 × 𝐶) ↔ 𝐵 ⊆ 𝐴)) | |
3 | 1, 2 | anbi12d 473 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → (((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ⊆ (𝐴 × 𝐶)) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴))) |
4 | eqss 3182 | . 2 ⊢ ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ⊆ (𝐴 × 𝐶))) | |
5 | eqss 3182 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
6 | 3, 4, 5 | 3bitr4g 223 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1363 ∃wex 1502 ∈ wcel 2158 ⊆ wss 3141 × cxp 4636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 df-opab 4077 df-xp 4644 df-dm 4648 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |