| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpcan2m | GIF version | ||
| Description: Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.) |
| Ref | Expression |
|---|---|
| xpcan2m | ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssxp1 5161 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | ssxp1 5161 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐵 × 𝐶) ⊆ (𝐴 × 𝐶) ↔ 𝐵 ⊆ 𝐴)) | |
| 3 | 1, 2 | anbi12d 473 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → (((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ⊆ (𝐴 × 𝐶)) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴))) |
| 4 | eqss 3239 | . 2 ⊢ ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ⊆ (𝐴 × 𝐶))) | |
| 5 | eqss 3239 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4g 223 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ⊆ wss 3197 × cxp 4714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4722 df-dm 4726 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |