| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpcan2m | GIF version | ||
| Description: Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.) |
| Ref | Expression |
|---|---|
| xpcan2m | ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssxp1 5106 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | ssxp1 5106 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐵 × 𝐶) ⊆ (𝐴 × 𝐶) ↔ 𝐵 ⊆ 𝐴)) | |
| 3 | 1, 2 | anbi12d 473 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → (((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ⊆ (𝐴 × 𝐶)) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴))) |
| 4 | eqss 3198 | . 2 ⊢ ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ⊆ (𝐴 × 𝐶))) | |
| 5 | eqss 3198 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4g 223 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ⊆ wss 3157 × cxp 4661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-dm 4673 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |