| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpcan2m | GIF version | ||
| Description: Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.) |
| Ref | Expression |
|---|---|
| xpcan2m | ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssxp1 5127 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | ssxp1 5127 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐵 × 𝐶) ⊆ (𝐴 × 𝐶) ↔ 𝐵 ⊆ 𝐴)) | |
| 3 | 1, 2 | anbi12d 473 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → (((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ⊆ (𝐴 × 𝐶)) ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴))) |
| 4 | eqss 3212 | . 2 ⊢ ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ⊆ (𝐴 × 𝐶))) | |
| 5 | eqss 3212 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 6 | 3, 4, 5 | 3bitr4g 223 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ⊆ wss 3170 × cxp 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-br 4051 df-opab 4113 df-xp 4688 df-dm 4692 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |