ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcan2m GIF version

Theorem xpcan2m 5081
Description: Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpcan2m (∃𝑥 𝑥𝐶 → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem xpcan2m
StepHypRef Expression
1 ssxp1 5077 . . 3 (∃𝑥 𝑥𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴𝐵))
2 ssxp1 5077 . . 3 (∃𝑥 𝑥𝐶 → ((𝐵 × 𝐶) ⊆ (𝐴 × 𝐶) ↔ 𝐵𝐴))
31, 2anbi12d 473 . 2 (∃𝑥 𝑥𝐶 → (((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ⊆ (𝐴 × 𝐶)) ↔ (𝐴𝐵𝐵𝐴)))
4 eqss 3182 . 2 ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ∧ (𝐵 × 𝐶) ⊆ (𝐴 × 𝐶)))
5 eqss 3182 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
63, 4, 53bitr4g 223 1 (∃𝑥 𝑥𝐶 → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1363  wex 1502  wcel 2158  wss 3141   × cxp 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-xp 4644  df-dm 4648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator