ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcanm Unicode version

Theorem xpcanm 5043
Description: Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpcanm  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  =  ( C  X.  B )  <-> 
A  =  B ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem xpcanm
StepHypRef Expression
1 ssxp2 5041 . . 3  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  C_  ( C  X.  B )  <->  A  C_  B
) )
2 ssxp2 5041 . . 3  |-  ( E. x  x  e.  C  ->  ( ( C  X.  B )  C_  ( C  X.  A )  <->  B  C_  A
) )
31, 2anbi12d 465 . 2  |-  ( E. x  x  e.  C  ->  ( ( ( C  X.  A )  C_  ( C  X.  B
)  /\  ( C  X.  B )  C_  ( C  X.  A ) )  <-> 
( A  C_  B  /\  B  C_  A ) ) )
4 eqss 3157 . 2  |-  ( ( C  X.  A )  =  ( C  X.  B )  <->  ( ( C  X.  A )  C_  ( C  X.  B
)  /\  ( C  X.  B )  C_  ( C  X.  A ) ) )
5 eqss 3157 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
63, 4, 53bitr4g 222 1  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  =  ( C  X.  B )  <-> 
A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136    C_ wss 3116    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator