ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcanm Unicode version

Theorem xpcanm 5069
Description: Cancellation law for cross-product. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
xpcanm  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  =  ( C  X.  B )  <-> 
A  =  B ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem xpcanm
StepHypRef Expression
1 ssxp2 5067 . . 3  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  C_  ( C  X.  B )  <->  A  C_  B
) )
2 ssxp2 5067 . . 3  |-  ( E. x  x  e.  C  ->  ( ( C  X.  B )  C_  ( C  X.  A )  <->  B  C_  A
) )
31, 2anbi12d 473 . 2  |-  ( E. x  x  e.  C  ->  ( ( ( C  X.  A )  C_  ( C  X.  B
)  /\  ( C  X.  B )  C_  ( C  X.  A ) )  <-> 
( A  C_  B  /\  B  C_  A ) ) )
4 eqss 3171 . 2  |-  ( ( C  X.  A )  =  ( C  X.  B )  <->  ( ( C  X.  A )  C_  ( C  X.  B
)  /\  ( C  X.  B )  C_  ( C  X.  A ) ) )
5 eqss 3171 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
63, 4, 53bitr4g 223 1  |-  ( E. x  x  e.  C  ->  ( ( C  X.  A )  =  ( C  X.  B )  <-> 
A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148    C_ wss 3130    X. cxp 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-xp 4633  df-rel 4634  df-cnv 4635  df-dm 4637  df-rn 4638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator