ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq0r Unicode version

Theorem xpeq0r 5124
Description: A cross product is empty if at least one member is empty. (Contributed by Jim Kingdon, 12-Dec-2018.)
Assertion
Ref Expression
xpeq0r  |-  ( ( A  =  (/)  \/  B  =  (/) )  ->  ( A  X.  B )  =  (/) )

Proof of Theorem xpeq0r
StepHypRef Expression
1 xpeq1 4707 . . 3  |-  ( A  =  (/)  ->  ( A  X.  B )  =  ( (/)  X.  B
) )
2 0xp 4773 . . 3  |-  ( (/)  X.  B )  =  (/)
31, 2eqtrdi 2256 . 2  |-  ( A  =  (/)  ->  ( A  X.  B )  =  (/) )
4 xpeq2 4708 . . 3  |-  ( B  =  (/)  ->  ( A  X.  B )  =  ( A  X.  (/) ) )
5 xp0 5121 . . 3  |-  ( A  X.  (/) )  =  (/)
64, 5eqtrdi 2256 . 2  |-  ( B  =  (/)  ->  ( A  X.  B )  =  (/) )
73, 6jaoi 718 1  |-  ( ( A  =  (/)  \/  B  =  (/) )  ->  ( A  X.  B )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373   (/)c0 3468    X. cxp 4691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701
This theorem is referenced by:  sqxpeq0  5125
  Copyright terms: Public domain W3C validator