ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqxpeq0 Unicode version

Theorem sqxpeq0 5090
Description: A Cartesian square is empty iff its member is empty. (Contributed by Jim Kingdon, 21-Apr-2023.)
Assertion
Ref Expression
sqxpeq0  |-  ( ( A  X.  A )  =  (/)  <->  A  =  (/) )

Proof of Theorem sqxpeq0
StepHypRef Expression
1 dmeq 4863 . . 3  |-  ( ( A  X.  A )  =  (/)  ->  dom  ( A  X.  A )  =  dom  (/) )
2 dmxpid 4884 . . 3  |-  dom  ( A  X.  A )  =  A
3 dm0 4877 . . 3  |-  dom  (/)  =  (/)
41, 2, 33eqtr3g 2249 . 2  |-  ( ( A  X.  A )  =  (/)  ->  A  =  (/) )
5 xpeq0r 5089 . . 3  |-  ( ( A  =  (/)  \/  A  =  (/) )  ->  ( A  X.  A )  =  (/) )
65orcs 736 . 2  |-  ( A  =  (/)  ->  ( A  X.  A )  =  (/) )
74, 6impbii 126 1  |-  ( ( A  X.  A )  =  (/)  <->  A  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   (/)c0 3447    X. cxp 4658   dom cdm 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-dm 4670
This theorem is referenced by:  metn0  14557
  Copyright terms: Public domain W3C validator