ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpm Unicode version

Theorem xpm 5030
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 13-Dec-2018.)
Assertion
Ref Expression
xpm  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  <->  E. z  z  e.  ( A  X.  B
) )
Distinct variable groups:    x, A    y, B    z, A    z, B
Allowed substitution hints:    A( y)    B( x)

Proof of Theorem xpm
Dummy variables  a  b  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpmlem 5029 . 2  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. w  w  e.  ( A  X.  B
) )
2 eleq1 2233 . . . 4  |-  ( a  =  x  ->  (
a  e.  A  <->  x  e.  A ) )
32cbvexv 1911 . . 3  |-  ( E. a  a  e.  A  <->  E. x  x  e.  A
)
4 eleq1 2233 . . . 4  |-  ( b  =  y  ->  (
b  e.  B  <->  y  e.  B ) )
54cbvexv 1911 . . 3  |-  ( E. b  b  e.  B  <->  E. y  y  e.  B
)
63, 5anbi12i 457 . 2  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <-> 
( E. x  x  e.  A  /\  E. y  y  e.  B
) )
7 eleq1 2233 . . 3  |-  ( w  =  z  ->  (
w  e.  ( A  X.  B )  <->  z  e.  ( A  X.  B
) ) )
87cbvexv 1911 . 2  |-  ( E. w  w  e.  ( A  X.  B )  <->  E. z  z  e.  ( A  X.  B
) )
91, 6, 83bitr3i 209 1  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  <->  E. z  z  e.  ( A  X.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1485    e. wcel 2141    X. cxp 4607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-opab 4049  df-xp 4615
This theorem is referenced by:  ssxpbm  5044  xp11m  5047  xpexr2m  5050  unixpm  5144
  Copyright terms: Public domain W3C validator