ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpm Unicode version

Theorem xpm 5104
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 13-Dec-2018.)
Assertion
Ref Expression
xpm  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  <->  E. z  z  e.  ( A  X.  B
) )
Distinct variable groups:    x, A    y, B    z, A    z, B
Allowed substitution hints:    A( y)    B( x)

Proof of Theorem xpm
Dummy variables  a  b  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpmlem 5103 . 2  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. w  w  e.  ( A  X.  B
) )
2 eleq1 2268 . . . 4  |-  ( a  =  x  ->  (
a  e.  A  <->  x  e.  A ) )
32cbvexv 1942 . . 3  |-  ( E. a  a  e.  A  <->  E. x  x  e.  A
)
4 eleq1 2268 . . . 4  |-  ( b  =  y  ->  (
b  e.  B  <->  y  e.  B ) )
54cbvexv 1942 . . 3  |-  ( E. b  b  e.  B  <->  E. y  y  e.  B
)
63, 5anbi12i 460 . 2  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <-> 
( E. x  x  e.  A  /\  E. y  y  e.  B
) )
7 eleq1 2268 . . 3  |-  ( w  =  z  ->  (
w  e.  ( A  X.  B )  <->  z  e.  ( A  X.  B
) ) )
87cbvexv 1942 . 2  |-  ( E. w  w  e.  ( A  X.  B )  <->  E. z  z  e.  ( A  X.  B
) )
91, 6, 83bitr3i 210 1  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  <->  E. z  z  e.  ( A  X.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1515    e. wcel 2176    X. cxp 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4106  df-xp 4681
This theorem is referenced by:  ssxpbm  5118  xp11m  5121  xpexr2m  5124  unixpm  5218
  Copyright terms: Public domain W3C validator