ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpm Unicode version

Theorem xpm 5150
Description: The cross product of inhabited classes is inhabited. (Contributed by Jim Kingdon, 13-Dec-2018.)
Assertion
Ref Expression
xpm  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  <->  E. z  z  e.  ( A  X.  B
) )
Distinct variable groups:    x, A    y, B    z, A    z, B
Allowed substitution hints:    A( y)    B( x)

Proof of Theorem xpm
Dummy variables  a  b  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpmlem 5149 . 2  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. w  w  e.  ( A  X.  B
) )
2 eleq1 2292 . . . 4  |-  ( a  =  x  ->  (
a  e.  A  <->  x  e.  A ) )
32cbvexv 1965 . . 3  |-  ( E. a  a  e.  A  <->  E. x  x  e.  A
)
4 eleq1 2292 . . . 4  |-  ( b  =  y  ->  (
b  e.  B  <->  y  e.  B ) )
54cbvexv 1965 . . 3  |-  ( E. b  b  e.  B  <->  E. y  y  e.  B
)
63, 5anbi12i 460 . 2  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <-> 
( E. x  x  e.  A  /\  E. y  y  e.  B
) )
7 eleq1 2292 . . 3  |-  ( w  =  z  ->  (
w  e.  ( A  X.  B )  <->  z  e.  ( A  X.  B
) ) )
87cbvexv 1965 . 2  |-  ( E. w  w  e.  ( A  X.  B )  <->  E. z  z  e.  ( A  X.  B
) )
91, 6, 83bitr3i 210 1  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  <->  E. z  z  e.  ( A  X.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1538    e. wcel 2200    X. cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-xp 4725
This theorem is referenced by:  ssxpbm  5164  xp11m  5167  xpexr2m  5170  unixpm  5264
  Copyright terms: Public domain W3C validator