ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq0r GIF version

Theorem xpeq0r 5088
Description: A cross product is empty if at least one member is empty. (Contributed by Jim Kingdon, 12-Dec-2018.)
Assertion
Ref Expression
xpeq0r ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 × 𝐵) = ∅)

Proof of Theorem xpeq0r
StepHypRef Expression
1 xpeq1 4673 . . 3 (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵))
2 0xp 4739 . . 3 (∅ × 𝐵) = ∅
31, 2eqtrdi 2242 . 2 (𝐴 = ∅ → (𝐴 × 𝐵) = ∅)
4 xpeq2 4674 . . 3 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
5 xp0 5085 . . 3 (𝐴 × ∅) = ∅
64, 5eqtrdi 2242 . 2 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
73, 6jaoi 717 1 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 × 𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1364  c0 3446   × cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667
This theorem is referenced by:  sqxpeq0  5089
  Copyright terms: Public domain W3C validator