ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq0r GIF version

Theorem xpeq0r 5147
Description: A cross product is empty if at least one member is empty. (Contributed by Jim Kingdon, 12-Dec-2018.)
Assertion
Ref Expression
xpeq0r ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 × 𝐵) = ∅)

Proof of Theorem xpeq0r
StepHypRef Expression
1 xpeq1 4730 . . 3 (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵))
2 0xp 4796 . . 3 (∅ × 𝐵) = ∅
31, 2eqtrdi 2278 . 2 (𝐴 = ∅ → (𝐴 × 𝐵) = ∅)
4 xpeq2 4731 . . 3 (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅))
5 xp0 5144 . . 3 (𝐴 × ∅) = ∅
64, 5eqtrdi 2278 . 2 (𝐵 = ∅ → (𝐴 × 𝐵) = ∅)
73, 6jaoi 721 1 ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 × 𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713   = wceq 1395  c0 3491   × cxp 4714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4722  df-rel 4723  df-cnv 4724
This theorem is referenced by:  sqxpeq0  5148
  Copyright terms: Public domain W3C validator