| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpeq0r | GIF version | ||
| Description: A cross product is empty if at least one member is empty. (Contributed by Jim Kingdon, 12-Dec-2018.) |
| Ref | Expression |
|---|---|
| xpeq0r | ⊢ ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 × 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 4730 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵)) | |
| 2 | 0xp 4796 | . . 3 ⊢ (∅ × 𝐵) = ∅ | |
| 3 | 1, 2 | eqtrdi 2278 | . 2 ⊢ (𝐴 = ∅ → (𝐴 × 𝐵) = ∅) |
| 4 | xpeq2 4731 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
| 5 | xp0 5144 | . . 3 ⊢ (𝐴 × ∅) = ∅ | |
| 6 | 4, 5 | eqtrdi 2278 | . 2 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
| 7 | 3, 6 | jaoi 721 | 1 ⊢ ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 × 𝐵) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 = wceq 1395 ∅c0 3491 × cxp 4714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4722 df-rel 4723 df-cnv 4724 |
| This theorem is referenced by: sqxpeq0 5148 |
| Copyright terms: Public domain | W3C validator |