| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpeq0r | GIF version | ||
| Description: A cross product is empty if at least one member is empty. (Contributed by Jim Kingdon, 12-Dec-2018.) |
| Ref | Expression |
|---|---|
| xpeq0r | ⊢ ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 × 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 4694 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 × 𝐵) = (∅ × 𝐵)) | |
| 2 | 0xp 4760 | . . 3 ⊢ (∅ × 𝐵) = ∅ | |
| 3 | 1, 2 | eqtrdi 2255 | . 2 ⊢ (𝐴 = ∅ → (𝐴 × 𝐵) = ∅) |
| 4 | xpeq2 4695 | . . 3 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = (𝐴 × ∅)) | |
| 5 | xp0 5108 | . . 3 ⊢ (𝐴 × ∅) = ∅ | |
| 6 | 4, 5 | eqtrdi 2255 | . 2 ⊢ (𝐵 = ∅ → (𝐴 × 𝐵) = ∅) |
| 7 | 3, 6 | jaoi 718 | 1 ⊢ ((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝐴 × 𝐵) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 = wceq 1373 ∅c0 3462 × cxp 4678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-xp 4686 df-rel 4687 df-cnv 4688 |
| This theorem is referenced by: sqxpeq0 5112 |
| Copyright terms: Public domain | W3C validator |