ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposssxp Unicode version

Theorem tposssxp 6393
Description: The transposition is a subset of a cross product. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
tposssxp  |- tpos  F  C_  ( ( `' dom  F  u.  { (/) } )  X.  ran  F )

Proof of Theorem tposssxp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-tpos 6389 . . 3  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
2 cossxp 5250 . . 3  |-  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )  C_  ( dom  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  X.  ran  F )
31, 2eqsstri 3256 . 2  |- tpos  F  C_  ( dom  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } )  X.  ran  F )
4 eqid 2229 . . . 4  |-  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  =  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
54dmmptss 5224 . . 3  |-  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) 
C_  ( `' dom  F  u.  { (/) } )
6 xpss1 4828 . . 3  |-  ( dom  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) 
C_  ( `' dom  F  u.  { (/) } )  ->  ( dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  X.  ran  F ) 
C_  ( ( `' dom  F  u.  { (/)
} )  X.  ran  F ) )
75, 6ax-mp 5 . 2  |-  ( dom  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  X.  ran  F ) 
C_  ( ( `' dom  F  u.  { (/)
} )  X.  ran  F )
83, 7sstri 3233 1  |- tpos  F  C_  ( ( `' dom  F  u.  { (/) } )  X.  ran  F )
Colors of variables: wff set class
Syntax hints:    u. cun 3195    C_ wss 3197   (/)c0 3491   {csn 3666   U.cuni 3887    |-> cmpt 4144    X. cxp 4716   `'ccnv 4717   dom cdm 4718   ran crn 4719    o. ccom 4722  tpos ctpos 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-mpt 4146  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-tpos 6389
This theorem is referenced by:  reltpos  6394  tposexg  6402
  Copyright terms: Public domain W3C validator