ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposssxp Unicode version

Theorem tposssxp 6028
Description: The transposition is a subset of a cross product. (Contributed by Mario Carneiro, 12-Jan-2017.)
Assertion
Ref Expression
tposssxp  |- tpos  F  C_  ( ( `' dom  F  u.  { (/) } )  X.  ran  F )

Proof of Theorem tposssxp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-tpos 6024 . . 3  |- tpos  F  =  ( F  o.  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) )
2 cossxp 4966 . . 3  |-  ( F  o.  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } ) )  C_  ( dom  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  X.  ran  F )
31, 2eqsstri 3057 . 2  |- tpos  F  C_  ( dom  ( x  e.  ( `' dom  F  u.  { (/) } )  |->  U. `' { x } )  X.  ran  F )
4 eqid 2089 . . . 4  |-  ( x  e.  ( `' dom  F  u.  { (/) } ) 
|->  U. `' { x } )  =  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )
54dmmptss 4940 . . 3  |-  dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) 
C_  ( `' dom  F  u.  { (/) } )
6 xpss1 4561 . . 3  |-  ( dom  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } ) 
C_  ( `' dom  F  u.  { (/) } )  ->  ( dom  (
x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  X.  ran  F ) 
C_  ( ( `' dom  F  u.  { (/)
} )  X.  ran  F ) )
75, 6ax-mp 7 . 2  |-  ( dom  ( x  e.  ( `' dom  F  u.  { (/)
} )  |->  U. `' { x } )  X.  ran  F ) 
C_  ( ( `' dom  F  u.  { (/)
} )  X.  ran  F )
83, 7sstri 3035 1  |- tpos  F  C_  ( ( `' dom  F  u.  { (/) } )  X.  ran  F )
Colors of variables: wff set class
Syntax hints:    u. cun 2998    C_ wss 3000   (/)c0 3287   {csn 3450   U.cuni 3659    |-> cmpt 3905    X. cxp 4450   `'ccnv 4451   dom cdm 4452   ran crn 4453    o. ccom 4456  tpos ctpos 6023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852  df-opab 3906  df-mpt 3907  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-tpos 6024
This theorem is referenced by:  reltpos  6029  tposexg  6037
  Copyright terms: Public domain W3C validator