| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tx1cn | Unicode version | ||
| Description: Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| tx1cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1stres 6305 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | ffn 5473 |
. . . . . . . 8
| |
| 4 | elpreima 5754 |
. . . . . . . 8
| |
| 5 | 1, 3, 4 | mp2b 8 |
. . . . . . 7
|
| 6 | fvres 5651 |
. . . . . . . . . 10
| |
| 7 | 6 | eleq1d 2298 |
. . . . . . . . 9
|
| 8 | 1st2nd2 6321 |
. . . . . . . . . 10
| |
| 9 | xp2nd 6312 |
. . . . . . . . . 10
| |
| 10 | elxp6 6315 |
. . . . . . . . . . . 12
| |
| 11 | anass 401 |
. . . . . . . . . . . 12
| |
| 12 | an32 562 |
. . . . . . . . . . . 12
| |
| 13 | 10, 11, 12 | 3bitr2i 208 |
. . . . . . . . . . 11
|
| 14 | 13 | baib 924 |
. . . . . . . . . 10
|
| 15 | 8, 9, 14 | syl2anc 411 |
. . . . . . . . 9
|
| 16 | 7, 15 | bitr4d 191 |
. . . . . . . 8
|
| 17 | 16 | pm5.32i 454 |
. . . . . . 7
|
| 18 | 5, 17 | bitri 184 |
. . . . . 6
|
| 19 | toponss 14700 |
. . . . . . . . . 10
| |
| 20 | 19 | adantlr 477 |
. . . . . . . . 9
|
| 21 | xpss1 4829 |
. . . . . . . . 9
| |
| 22 | 20, 21 | syl 14 |
. . . . . . . 8
|
| 23 | 22 | sseld 3223 |
. . . . . . 7
|
| 24 | 23 | pm4.71rd 394 |
. . . . . 6
|
| 25 | 18, 24 | bitr4id 199 |
. . . . 5
|
| 26 | 25 | eqrdv 2227 |
. . . 4
|
| 27 | toponmax 14699 |
. . . . . 6
| |
| 28 | 27 | ad2antlr 489 |
. . . . 5
|
| 29 | txopn 14939 |
. . . . . 6
| |
| 30 | 29 | anassrs 400 |
. . . . 5
|
| 31 | 28, 30 | mpdan 421 |
. . . 4
|
| 32 | 26, 31 | eqeltrd 2306 |
. . 3
|
| 33 | 32 | ralrimiva 2603 |
. 2
|
| 34 | txtopon 14936 |
. . 3
| |
| 35 | simpl 109 |
. . 3
| |
| 36 | iscn 14871 |
. . 3
| |
| 37 | 34, 35, 36 | syl2anc 411 |
. 2
|
| 38 | 2, 33, 37 | mpbir2and 950 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-topgen 13293 df-top 14672 df-topon 14685 df-bases 14717 df-cn 14862 df-tx 14927 |
| This theorem is referenced by: txcn 14949 cnmpt1st 14962 |
| Copyright terms: Public domain | W3C validator |