ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tx1cn Unicode version

Theorem tx1cn 13854
Description: Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
tx1cn  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 1st  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  R ) )

Proof of Theorem tx1cn
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1stres 6162 . . 3  |-  ( 1st  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> X
21a1i 9 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 1st  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> X )
3 ffn 5367 . . . . . . . 8  |-  ( ( 1st  |`  ( X  X.  Y ) ) : ( X  X.  Y
) --> X  ->  ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
) )
4 elpreima 5637 . . . . . . . 8  |-  ( ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
)  ->  ( z  e.  ( `' ( 1st  |`  ( X  X.  Y
) ) " w
)  <->  ( z  e.  ( X  X.  Y
)  /\  ( ( 1st  |`  ( X  X.  Y ) ) `  z )  e.  w
) ) )
51, 3, 4mp2b 8 . . . . . . 7  |-  ( z  e.  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  <->  ( z  e.  ( X  X.  Y
)  /\  ( ( 1st  |`  ( X  X.  Y ) ) `  z )  e.  w
) )
6 fvres 5541 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  (
( 1st  |`  ( X  X.  Y ) ) `
 z )  =  ( 1st `  z
) )
76eleq1d 2246 . . . . . . . . 9  |-  ( z  e.  ( X  X.  Y )  ->  (
( ( 1st  |`  ( X  X.  Y ) ) `
 z )  e.  w  <->  ( 1st `  z
)  e.  w ) )
8 1st2nd2 6178 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
9 xp2nd 6169 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  ( 2nd `  z )  e.  Y )
10 elxp6 6172 . . . . . . . . . . . 12  |-  ( z  e.  ( w  X.  Y )  <->  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  w  /\  ( 2nd `  z )  e.  Y ) ) )
11 anass 401 . . . . . . . . . . . 12  |-  ( ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  w
)  /\  ( 2nd `  z )  e.  Y
)  <->  ( z  = 
<. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  w  /\  ( 2nd `  z )  e.  Y ) ) )
12 an32 562 . . . . . . . . . . . 12  |-  ( ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  w
)  /\  ( 2nd `  z )  e.  Y
)  <->  ( ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  ( 2nd `  z )  e.  Y )  /\  ( 1st `  z )  e.  w ) )
1310, 11, 123bitr2i 208 . . . . . . . . . . 11  |-  ( z  e.  ( w  X.  Y )  <->  ( (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 2nd `  z )  e.  Y
)  /\  ( 1st `  z )  e.  w
) )
1413baib 919 . . . . . . . . . 10  |-  ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 2nd `  z )  e.  Y
)  ->  ( z  e.  ( w  X.  Y
)  <->  ( 1st `  z
)  e.  w ) )
158, 9, 14syl2anc 411 . . . . . . . . 9  |-  ( z  e.  ( X  X.  Y )  ->  (
z  e.  ( w  X.  Y )  <->  ( 1st `  z )  e.  w
) )
167, 15bitr4d 191 . . . . . . . 8  |-  ( z  e.  ( X  X.  Y )  ->  (
( ( 1st  |`  ( X  X.  Y ) ) `
 z )  e.  w  <->  z  e.  ( w  X.  Y ) ) )
1716pm5.32i 454 . . . . . . 7  |-  ( ( z  e.  ( X  X.  Y )  /\  ( ( 1st  |`  ( X  X.  Y ) ) `
 z )  e.  w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( w  X.  Y
) ) )
185, 17bitri 184 . . . . . 6  |-  ( z  e.  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( w  X.  Y
) ) )
19 toponss 13611 . . . . . . . . . 10  |-  ( ( R  e.  (TopOn `  X )  /\  w  e.  R )  ->  w  C_  X )
2019adantlr 477 . . . . . . . . 9  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  w  C_  X )
21 xpss1 4738 . . . . . . . . 9  |-  ( w 
C_  X  ->  (
w  X.  Y ) 
C_  ( X  X.  Y ) )
2220, 21syl 14 . . . . . . . 8  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
w  X.  Y ) 
C_  ( X  X.  Y ) )
2322sseld 3156 . . . . . . 7  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
z  e.  ( w  X.  Y )  -> 
z  e.  ( X  X.  Y ) ) )
2423pm4.71rd 394 . . . . . 6  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
z  e.  ( w  X.  Y )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( w  X.  Y
) ) ) )
2518, 24bitr4id 199 . . . . 5  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
z  e.  ( `' ( 1st  |`  ( X  X.  Y ) )
" w )  <->  z  e.  ( w  X.  Y
) ) )
2625eqrdv 2175 . . . 4  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  ( `' ( 1st  |`  ( X  X.  Y ) )
" w )  =  ( w  X.  Y
) )
27 toponmax 13610 . . . . . 6  |-  ( S  e.  (TopOn `  Y
)  ->  Y  e.  S )
2827ad2antlr 489 . . . . 5  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  Y  e.  S )
29 txopn 13850 . . . . . 6  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( w  e.  R  /\  Y  e.  S ) )  -> 
( w  X.  Y
)  e.  ( R 
tX  S ) )
3029anassrs 400 . . . . 5  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  w  e.  R )  /\  Y  e.  S
)  ->  ( w  X.  Y )  e.  ( R  tX  S ) )
3128, 30mpdan 421 . . . 4  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
w  X.  Y )  e.  ( R  tX  S ) )
3226, 31eqeltrd 2254 . . 3  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  ( `' ( 1st  |`  ( X  X.  Y ) )
" w )  e.  ( R  tX  S
) )
3332ralrimiva 2550 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  A. w  e.  R  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) )
34 txtopon 13847 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  (TopOn `  ( X  X.  Y
) ) )
35 simpl 109 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  R  e.  (TopOn `  X ) )
36 iscn 13782 . . 3  |-  ( ( ( R  tX  S
)  e.  (TopOn `  ( X  X.  Y
) )  /\  R  e.  (TopOn `  X )
)  ->  ( ( 1st  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  R
)  <->  ( ( 1st  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> X  /\  A. w  e.  R  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) ) ) )
3734, 35, 36syl2anc 411 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( ( 1st  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  R
)  <->  ( ( 1st  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> X  /\  A. w  e.  R  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) ) ) )
382, 33, 37mpbir2and 944 1  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 1st  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3131   <.cop 3597    X. cxp 4626   `'ccnv 4627    |` cres 4630   "cima 4631    Fn wfn 5213   -->wf 5214   ` cfv 5218  (class class class)co 5877   1stc1st 6141   2ndc2nd 6142  TopOnctopon 13595    Cn ccn 13770    tX ctx 13837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-topgen 12714  df-top 13583  df-topon 13596  df-bases 13628  df-cn 13773  df-tx 13838
This theorem is referenced by:  txcn  13860  cnmpt1st  13873
  Copyright terms: Public domain W3C validator