ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tx1cn Unicode version

Theorem tx1cn 14856
Description: Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
tx1cn  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 1st  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  R ) )

Proof of Theorem tx1cn
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1stres 6268 . . 3  |-  ( 1st  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> X
21a1i 9 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 1st  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> X )
3 ffn 5445 . . . . . . . 8  |-  ( ( 1st  |`  ( X  X.  Y ) ) : ( X  X.  Y
) --> X  ->  ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
) )
4 elpreima 5722 . . . . . . . 8  |-  ( ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
)  ->  ( z  e.  ( `' ( 1st  |`  ( X  X.  Y
) ) " w
)  <->  ( z  e.  ( X  X.  Y
)  /\  ( ( 1st  |`  ( X  X.  Y ) ) `  z )  e.  w
) ) )
51, 3, 4mp2b 8 . . . . . . 7  |-  ( z  e.  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  <->  ( z  e.  ( X  X.  Y
)  /\  ( ( 1st  |`  ( X  X.  Y ) ) `  z )  e.  w
) )
6 fvres 5623 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  (
( 1st  |`  ( X  X.  Y ) ) `
 z )  =  ( 1st `  z
) )
76eleq1d 2276 . . . . . . . . 9  |-  ( z  e.  ( X  X.  Y )  ->  (
( ( 1st  |`  ( X  X.  Y ) ) `
 z )  e.  w  <->  ( 1st `  z
)  e.  w ) )
8 1st2nd2 6284 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
9 xp2nd 6275 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  ( 2nd `  z )  e.  Y )
10 elxp6 6278 . . . . . . . . . . . 12  |-  ( z  e.  ( w  X.  Y )  <->  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  w  /\  ( 2nd `  z )  e.  Y ) ) )
11 anass 401 . . . . . . . . . . . 12  |-  ( ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  w
)  /\  ( 2nd `  z )  e.  Y
)  <->  ( z  = 
<. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  w  /\  ( 2nd `  z )  e.  Y ) ) )
12 an32 562 . . . . . . . . . . . 12  |-  ( ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  w
)  /\  ( 2nd `  z )  e.  Y
)  <->  ( ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  ( 2nd `  z )  e.  Y )  /\  ( 1st `  z )  e.  w ) )
1310, 11, 123bitr2i 208 . . . . . . . . . . 11  |-  ( z  e.  ( w  X.  Y )  <->  ( (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 2nd `  z )  e.  Y
)  /\  ( 1st `  z )  e.  w
) )
1413baib 921 . . . . . . . . . 10  |-  ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 2nd `  z )  e.  Y
)  ->  ( z  e.  ( w  X.  Y
)  <->  ( 1st `  z
)  e.  w ) )
158, 9, 14syl2anc 411 . . . . . . . . 9  |-  ( z  e.  ( X  X.  Y )  ->  (
z  e.  ( w  X.  Y )  <->  ( 1st `  z )  e.  w
) )
167, 15bitr4d 191 . . . . . . . 8  |-  ( z  e.  ( X  X.  Y )  ->  (
( ( 1st  |`  ( X  X.  Y ) ) `
 z )  e.  w  <->  z  e.  ( w  X.  Y ) ) )
1716pm5.32i 454 . . . . . . 7  |-  ( ( z  e.  ( X  X.  Y )  /\  ( ( 1st  |`  ( X  X.  Y ) ) `
 z )  e.  w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( w  X.  Y
) ) )
185, 17bitri 184 . . . . . 6  |-  ( z  e.  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( w  X.  Y
) ) )
19 toponss 14613 . . . . . . . . . 10  |-  ( ( R  e.  (TopOn `  X )  /\  w  e.  R )  ->  w  C_  X )
2019adantlr 477 . . . . . . . . 9  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  w  C_  X )
21 xpss1 4803 . . . . . . . . 9  |-  ( w 
C_  X  ->  (
w  X.  Y ) 
C_  ( X  X.  Y ) )
2220, 21syl 14 . . . . . . . 8  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
w  X.  Y ) 
C_  ( X  X.  Y ) )
2322sseld 3200 . . . . . . 7  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
z  e.  ( w  X.  Y )  -> 
z  e.  ( X  X.  Y ) ) )
2423pm4.71rd 394 . . . . . 6  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
z  e.  ( w  X.  Y )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( w  X.  Y
) ) ) )
2518, 24bitr4id 199 . . . . 5  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
z  e.  ( `' ( 1st  |`  ( X  X.  Y ) )
" w )  <->  z  e.  ( w  X.  Y
) ) )
2625eqrdv 2205 . . . 4  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  ( `' ( 1st  |`  ( X  X.  Y ) )
" w )  =  ( w  X.  Y
) )
27 toponmax 14612 . . . . . 6  |-  ( S  e.  (TopOn `  Y
)  ->  Y  e.  S )
2827ad2antlr 489 . . . . 5  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  Y  e.  S )
29 txopn 14852 . . . . . 6  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( w  e.  R  /\  Y  e.  S ) )  -> 
( w  X.  Y
)  e.  ( R 
tX  S ) )
3029anassrs 400 . . . . 5  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  w  e.  R )  /\  Y  e.  S
)  ->  ( w  X.  Y )  e.  ( R  tX  S ) )
3128, 30mpdan 421 . . . 4  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
w  X.  Y )  e.  ( R  tX  S ) )
3226, 31eqeltrd 2284 . . 3  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  ( `' ( 1st  |`  ( X  X.  Y ) )
" w )  e.  ( R  tX  S
) )
3332ralrimiva 2581 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  A. w  e.  R  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) )
34 txtopon 14849 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  (TopOn `  ( X  X.  Y
) ) )
35 simpl 109 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  R  e.  (TopOn `  X ) )
36 iscn 14784 . . 3  |-  ( ( ( R  tX  S
)  e.  (TopOn `  ( X  X.  Y
) )  /\  R  e.  (TopOn `  X )
)  ->  ( ( 1st  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  R
)  <->  ( ( 1st  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> X  /\  A. w  e.  R  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) ) ) )
3734, 35, 36syl2anc 411 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( ( 1st  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  R
)  <->  ( ( 1st  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> X  /\  A. w  e.  R  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) ) ) )
382, 33, 37mpbir2and 947 1  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 1st  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486    C_ wss 3174   <.cop 3646    X. cxp 4691   `'ccnv 4692    |` cres 4695   "cima 4696    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967   1stc1st 6247   2ndc2nd 6248  TopOnctopon 14597    Cn ccn 14772    tX ctx 14839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-topgen 13207  df-top 14585  df-topon 14598  df-bases 14630  df-cn 14775  df-tx 14840
This theorem is referenced by:  txcn  14862  cnmpt1st  14875
  Copyright terms: Public domain W3C validator