ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tx1cn Unicode version

Theorem tx1cn 14448
Description: Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
tx1cn  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 1st  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  R ) )

Proof of Theorem tx1cn
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1stres 6214 . . 3  |-  ( 1st  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> X
21a1i 9 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 1st  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> X )
3 ffn 5404 . . . . . . . 8  |-  ( ( 1st  |`  ( X  X.  Y ) ) : ( X  X.  Y
) --> X  ->  ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
) )
4 elpreima 5678 . . . . . . . 8  |-  ( ( 1st  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
)  ->  ( z  e.  ( `' ( 1st  |`  ( X  X.  Y
) ) " w
)  <->  ( z  e.  ( X  X.  Y
)  /\  ( ( 1st  |`  ( X  X.  Y ) ) `  z )  e.  w
) ) )
51, 3, 4mp2b 8 . . . . . . 7  |-  ( z  e.  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  <->  ( z  e.  ( X  X.  Y
)  /\  ( ( 1st  |`  ( X  X.  Y ) ) `  z )  e.  w
) )
6 fvres 5579 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  (
( 1st  |`  ( X  X.  Y ) ) `
 z )  =  ( 1st `  z
) )
76eleq1d 2262 . . . . . . . . 9  |-  ( z  e.  ( X  X.  Y )  ->  (
( ( 1st  |`  ( X  X.  Y ) ) `
 z )  e.  w  <->  ( 1st `  z
)  e.  w ) )
8 1st2nd2 6230 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
9 xp2nd 6221 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  ( 2nd `  z )  e.  Y )
10 elxp6 6224 . . . . . . . . . . . 12  |-  ( z  e.  ( w  X.  Y )  <->  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  w  /\  ( 2nd `  z )  e.  Y ) ) )
11 anass 401 . . . . . . . . . . . 12  |-  ( ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  w
)  /\  ( 2nd `  z )  e.  Y
)  <->  ( z  = 
<. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  w  /\  ( 2nd `  z )  e.  Y ) ) )
12 an32 562 . . . . . . . . . . . 12  |-  ( ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  w
)  /\  ( 2nd `  z )  e.  Y
)  <->  ( ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  ( 2nd `  z )  e.  Y )  /\  ( 1st `  z )  e.  w ) )
1310, 11, 123bitr2i 208 . . . . . . . . . . 11  |-  ( z  e.  ( w  X.  Y )  <->  ( (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 2nd `  z )  e.  Y
)  /\  ( 1st `  z )  e.  w
) )
1413baib 920 . . . . . . . . . 10  |-  ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 2nd `  z )  e.  Y
)  ->  ( z  e.  ( w  X.  Y
)  <->  ( 1st `  z
)  e.  w ) )
158, 9, 14syl2anc 411 . . . . . . . . 9  |-  ( z  e.  ( X  X.  Y )  ->  (
z  e.  ( w  X.  Y )  <->  ( 1st `  z )  e.  w
) )
167, 15bitr4d 191 . . . . . . . 8  |-  ( z  e.  ( X  X.  Y )  ->  (
( ( 1st  |`  ( X  X.  Y ) ) `
 z )  e.  w  <->  z  e.  ( w  X.  Y ) ) )
1716pm5.32i 454 . . . . . . 7  |-  ( ( z  e.  ( X  X.  Y )  /\  ( ( 1st  |`  ( X  X.  Y ) ) `
 z )  e.  w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( w  X.  Y
) ) )
185, 17bitri 184 . . . . . 6  |-  ( z  e.  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( w  X.  Y
) ) )
19 toponss 14205 . . . . . . . . . 10  |-  ( ( R  e.  (TopOn `  X )  /\  w  e.  R )  ->  w  C_  X )
2019adantlr 477 . . . . . . . . 9  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  w  C_  X )
21 xpss1 4770 . . . . . . . . 9  |-  ( w 
C_  X  ->  (
w  X.  Y ) 
C_  ( X  X.  Y ) )
2220, 21syl 14 . . . . . . . 8  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
w  X.  Y ) 
C_  ( X  X.  Y ) )
2322sseld 3179 . . . . . . 7  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
z  e.  ( w  X.  Y )  -> 
z  e.  ( X  X.  Y ) ) )
2423pm4.71rd 394 . . . . . 6  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
z  e.  ( w  X.  Y )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( w  X.  Y
) ) ) )
2518, 24bitr4id 199 . . . . 5  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
z  e.  ( `' ( 1st  |`  ( X  X.  Y ) )
" w )  <->  z  e.  ( w  X.  Y
) ) )
2625eqrdv 2191 . . . 4  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  ( `' ( 1st  |`  ( X  X.  Y ) )
" w )  =  ( w  X.  Y
) )
27 toponmax 14204 . . . . . 6  |-  ( S  e.  (TopOn `  Y
)  ->  Y  e.  S )
2827ad2antlr 489 . . . . 5  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  Y  e.  S )
29 txopn 14444 . . . . . 6  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( w  e.  R  /\  Y  e.  S ) )  -> 
( w  X.  Y
)  e.  ( R 
tX  S ) )
3029anassrs 400 . . . . 5  |-  ( ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y ) )  /\  w  e.  R )  /\  Y  e.  S
)  ->  ( w  X.  Y )  e.  ( R  tX  S ) )
3128, 30mpdan 421 . . . 4  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  (
w  X.  Y )  e.  ( R  tX  S ) )
3226, 31eqeltrd 2270 . . 3  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  R )  ->  ( `' ( 1st  |`  ( X  X.  Y ) )
" w )  e.  ( R  tX  S
) )
3332ralrimiva 2567 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  A. w  e.  R  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) )
34 txtopon 14441 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  (TopOn `  ( X  X.  Y
) ) )
35 simpl 109 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  R  e.  (TopOn `  X ) )
36 iscn 14376 . . 3  |-  ( ( ( R  tX  S
)  e.  (TopOn `  ( X  X.  Y
) )  /\  R  e.  (TopOn `  X )
)  ->  ( ( 1st  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  R
)  <->  ( ( 1st  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> X  /\  A. w  e.  R  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) ) ) )
3734, 35, 36syl2anc 411 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( ( 1st  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  R
)  <->  ( ( 1st  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> X  /\  A. w  e.  R  ( `' ( 1st  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) ) ) )
382, 33, 37mpbir2and 946 1  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 1st  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3154   <.cop 3622    X. cxp 4658   `'ccnv 4659    |` cres 4662   "cima 4663    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5919   1stc1st 6193   2ndc2nd 6194  TopOnctopon 14189    Cn ccn 14364    tX ctx 14431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-topgen 12874  df-top 14177  df-topon 14190  df-bases 14222  df-cn 14367  df-tx 14432
This theorem is referenced by:  txcn  14454  cnmpt1st  14467
  Copyright terms: Public domain W3C validator