| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpss1 | GIF version | ||
| Description: Subset relation for cross product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3212 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
| 2 | xpss12 4780 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3165 × cxp 4671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-in 3171 df-ss 3178 df-opab 4105 df-xp 4679 |
| This theorem is referenced by: ssres2 4983 ssxp1 5116 funssxp 5439 tposssxp 6325 tpostpos2 6341 tfrlemibfn 6404 tfr1onlembfn 6420 tfrcllembfn 6433 enq0enq 7526 tx1cn 14659 |
| Copyright terms: Public domain | W3C validator |