Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpss1 | GIF version |
Description: Subset relation for cross product. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
xpss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3148 | . 2 ⊢ 𝐶 ⊆ 𝐶 | |
2 | xpss12 4693 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐶) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
3 | 1, 2 | mpan2 422 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3102 × cxp 4584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-in 3108 df-ss 3115 df-opab 4026 df-xp 4592 |
This theorem is referenced by: ssres2 4893 ssxp1 5022 funssxp 5339 tposssxp 6196 tpostpos2 6212 tfrlemibfn 6275 tfr1onlembfn 6291 tfrcllembfn 6304 enq0enq 7351 tx1cn 12680 |
Copyright terms: Public domain | W3C validator |