ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xposdif GIF version

Theorem xposdif 9839
Description: Extended real version of posdif 8374. (Contributed by Mario Carneiro, 24-Aug-2015.) (Revised by Jim Kingdon, 17-Apr-2023.)
Assertion
Ref Expression
xposdif ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))

Proof of Theorem xposdif
StepHypRef Expression
1 elxr 9733 . . 3 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2 elxr 9733 . . . . 5 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
3 posdif 8374 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
4 rexsub 9810 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 +𝑒 -𝑒𝐴) = (𝐵𝐴))
54ancoms 266 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 -𝑒𝐴) = (𝐵𝐴))
65breq2d 4001 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵 +𝑒 -𝑒𝐴) ↔ 0 < (𝐵𝐴)))
73, 6bitr4d 190 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
87ex 114 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
9 rexr 7965 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
10 pnfnlt 9744 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
1110adantl 275 . . . . . . . . . 10 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
129, 11sylan2 284 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → ¬ +∞ < 𝐵)
13 simpl 108 . . . . . . . . . 10 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐴 = +∞)
1413breq1d 3999 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
1512, 14mtbird 668 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → ¬ 𝐴 < 𝐵)
16 0xr 7966 . . . . . . . . . 10 0 ∈ ℝ*
17 nltmnf 9745 . . . . . . . . . 10 (0 ∈ ℝ* → ¬ 0 < -∞)
1816, 17ax-mp 5 . . . . . . . . 9 ¬ 0 < -∞
19 xnegeq 9784 . . . . . . . . . . . . . 14 (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞)
2019adantr 274 . . . . . . . . . . . . 13 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → -𝑒𝐴 = -𝑒+∞)
21 xnegpnf 9785 . . . . . . . . . . . . 13 -𝑒+∞ = -∞
2220, 21eqtrdi 2219 . . . . . . . . . . . 12 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → -𝑒𝐴 = -∞)
2322oveq2d 5869 . . . . . . . . . . 11 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 -𝑒𝐴) = (𝐵 +𝑒 -∞))
24 renepnf 7967 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
2524adantl 275 . . . . . . . . . . . 12 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ +∞)
26 xaddmnf1 9805 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (𝐵 +𝑒 -∞) = -∞)
279, 25, 26syl2an2 589 . . . . . . . . . . 11 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 -∞) = -∞)
2823, 27eqtrd 2203 . . . . . . . . . 10 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 -𝑒𝐴) = -∞)
2928breq2d 4001 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (0 < (𝐵 +𝑒 -𝑒𝐴) ↔ 0 < -∞))
3018, 29mtbiri 670 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → ¬ 0 < (𝐵 +𝑒 -𝑒𝐴))
3115, 302falsed 697 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
3231ex 114 . . . . . 6 (𝐴 = +∞ → (𝐵 ∈ ℝ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
33 simpl 108 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐴 = -∞)
34 mnflt 9740 . . . . . . . . . 10 (𝐵 ∈ ℝ → -∞ < 𝐵)
3534adantl 275 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → -∞ < 𝐵)
3633, 35eqbrtrd 4011 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐴 < 𝐵)
37 0ltpnf 9739 . . . . . . . . 9 0 < +∞
38 xnegeq 9784 . . . . . . . . . . . . 13 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
39 xnegmnf 9786 . . . . . . . . . . . . 13 -𝑒-∞ = +∞
4038, 39eqtrdi 2219 . . . . . . . . . . . 12 (𝐴 = -∞ → -𝑒𝐴 = +∞)
4140oveq2d 5869 . . . . . . . . . . 11 (𝐴 = -∞ → (𝐵 +𝑒 -𝑒𝐴) = (𝐵 +𝑒 +∞))
4241adantr 274 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 -𝑒𝐴) = (𝐵 +𝑒 +∞))
43 renemnf 7968 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
4443adantl 275 . . . . . . . . . . 11 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ -∞)
45 xaddpnf1 9803 . . . . . . . . . . 11 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
469, 44, 45syl2an2 589 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 +∞) = +∞)
4742, 46eqtrd 2203 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 -𝑒𝐴) = +∞)
4837, 47breqtrrid 4027 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 0 < (𝐵 +𝑒 -𝑒𝐴))
4936, 482thd 174 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
5049ex 114 . . . . . 6 (𝐴 = -∞ → (𝐵 ∈ ℝ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
518, 32, 503jaoi 1298 . . . . 5 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐵 ∈ ℝ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
522, 51sylbi 120 . . . 4 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
53 ltpnf 9737 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 < +∞)
5453adantr 274 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < +∞)
55 simpr 109 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐵 = +∞)
5654, 55breqtrrd 4017 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
5755oveq1d 5868 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -𝑒𝐴))
58 rexneg 9787 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
59 renegcl 8180 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
6058, 59eqeltrd 2247 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ)
6160rexrd 7969 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ*)
6261adantr 274 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -𝑒𝐴 ∈ ℝ*)
6360renemnfd 7971 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → -𝑒𝐴 ≠ -∞)
6463adantr 274 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -𝑒𝐴 ≠ -∞)
65 xaddpnf2 9804 . . . . . . . . . . 11 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐴 ≠ -∞) → (+∞ +𝑒 -𝑒𝐴) = +∞)
6662, 64, 65syl2anc 409 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (+∞ +𝑒 -𝑒𝐴) = +∞)
6757, 66eqtrd 2203 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 +𝑒 -𝑒𝐴) = +∞)
6837, 67breqtrrid 4027 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 0 < (𝐵 +𝑒 -𝑒𝐴))
6956, 682thd 174 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
7069ex 114 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
71 pnfxr 7972 . . . . . . . . . 10 +∞ ∈ ℝ*
72 xrltnr 9736 . . . . . . . . . 10 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
7371, 72ax-mp 5 . . . . . . . . 9 ¬ +∞ < +∞
74 breq12 3994 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ +∞ < +∞))
7573, 74mtbiri 670 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 = +∞) → ¬ 𝐴 < 𝐵)
76 0re 7920 . . . . . . . . . 10 0 ∈ ℝ
7776ltnri 8012 . . . . . . . . 9 ¬ 0 < 0
78 simpr 109 . . . . . . . . . . . 12 ((𝐴 = +∞ ∧ 𝐵 = +∞) → 𝐵 = +∞)
7919, 21eqtrdi 2219 . . . . . . . . . . . . 13 (𝐴 = +∞ → -𝑒𝐴 = -∞)
8079adantr 274 . . . . . . . . . . . 12 ((𝐴 = +∞ ∧ 𝐵 = +∞) → -𝑒𝐴 = -∞)
8178, 80oveq12d 5871 . . . . . . . . . . 11 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐵 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -∞))
82 pnfaddmnf 9807 . . . . . . . . . . 11 (+∞ +𝑒 -∞) = 0
8381, 82eqtrdi 2219 . . . . . . . . . 10 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐵 +𝑒 -𝑒𝐴) = 0)
8483breq2d 4001 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (0 < (𝐵 +𝑒 -𝑒𝐴) ↔ 0 < 0))
8577, 84mtbiri 670 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 = +∞) → ¬ 0 < (𝐵 +𝑒 -𝑒𝐴))
8675, 852falsed 697 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
8786ex 114 . . . . . 6 (𝐴 = +∞ → (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
88 mnfltpnf 9742 . . . . . . . . 9 -∞ < +∞
89 breq12 3994 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ -∞ < +∞))
9088, 89mpbiri 167 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
91 oveq1 5860 . . . . . . . . . . 11 (𝐵 = +∞ → (𝐵 +𝑒 +∞) = (+∞ +𝑒 +∞))
9241, 91sylan9eq 2223 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐵 +𝑒 -𝑒𝐴) = (+∞ +𝑒 +∞))
93 pnfnemnf 7974 . . . . . . . . . . 11 +∞ ≠ -∞
94 xaddpnf1 9803 . . . . . . . . . . 11 ((+∞ ∈ ℝ* ∧ +∞ ≠ -∞) → (+∞ +𝑒 +∞) = +∞)
9571, 93, 94mp2an 424 . . . . . . . . . 10 (+∞ +𝑒 +∞) = +∞
9692, 95eqtrdi 2219 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐵 +𝑒 -𝑒𝐴) = +∞)
9737, 96breqtrrid 4027 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = +∞) → 0 < (𝐵 +𝑒 -𝑒𝐴))
9890, 972thd 174 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
9998ex 114 . . . . . 6 (𝐴 = -∞ → (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
10070, 87, 993jaoi 1298 . . . . 5 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
1012, 100sylbi 120 . . . 4 (𝐴 ∈ ℝ* → (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
102 rexr 7965 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
103102adantr 274 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
104 nltmnf 9745 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
105103, 104syl 14 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
106 simpr 109 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 = -∞)
107106breq2d 4001 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
108105, 107mtbird 668 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
109106oveq1d 5868 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 +𝑒 -𝑒𝐴) = (-∞ +𝑒 -𝑒𝐴))
110 rexr 7965 . . . . . . . . . . . . . 14 (-𝑒𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ*)
111 renepnf 7967 . . . . . . . . . . . . . 14 (-𝑒𝐴 ∈ ℝ → -𝑒𝐴 ≠ +∞)
112 xaddmnf2 9806 . . . . . . . . . . . . . 14 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐴 ≠ +∞) → (-∞ +𝑒 -𝑒𝐴) = -∞)
113110, 111, 112syl2anc 409 . . . . . . . . . . . . 13 (-𝑒𝐴 ∈ ℝ → (-∞ +𝑒 -𝑒𝐴) = -∞)
11460, 113syl 14 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (-∞ +𝑒 -𝑒𝐴) = -∞)
115114adantr 274 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (-∞ +𝑒 -𝑒𝐴) = -∞)
116109, 115eqtrd 2203 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 +𝑒 -𝑒𝐴) = -∞)
117116breq2d 4001 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (0 < (𝐵 +𝑒 -𝑒𝐴) ↔ 0 < -∞))
11818, 117mtbiri 670 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 0 < (𝐵 +𝑒 -𝑒𝐴))
119108, 1182falsed 697 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
120119ex 114 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
121 eleq1 2233 . . . . . . . . . . . 12 (𝐴 = +∞ → (𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ*))
12271, 121mpbiri 167 . . . . . . . . . . 11 (𝐴 = +∞ → 𝐴 ∈ ℝ*)
123122adantr 274 . . . . . . . . . 10 ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
124123, 104syl 14 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
125 simpr 109 . . . . . . . . . 10 ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐵 = -∞)
126125breq2d 4001 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
127124, 126mtbird 668 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
12879oveq2d 5869 . . . . . . . . . . . 12 (𝐴 = +∞ → (𝐵 +𝑒 -𝑒𝐴) = (𝐵 +𝑒 -∞))
129128adantr 274 . . . . . . . . . . 11 ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒 -𝑒𝐴) = (𝐵 +𝑒 -∞))
130 mnfxr 7976 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
131 eleq1 2233 . . . . . . . . . . . . 13 (𝐵 = -∞ → (𝐵 ∈ ℝ* ↔ -∞ ∈ ℝ*))
132130, 131mpbiri 167 . . . . . . . . . . . 12 (𝐵 = -∞ → 𝐵 ∈ ℝ*)
133 mnfnepnf 7975 . . . . . . . . . . . . . 14 -∞ ≠ +∞
134 neeq1 2353 . . . . . . . . . . . . . 14 (𝐵 = -∞ → (𝐵 ≠ +∞ ↔ -∞ ≠ +∞))
135133, 134mpbiri 167 . . . . . . . . . . . . 13 (𝐵 = -∞ → 𝐵 ≠ +∞)
136135adantl 275 . . . . . . . . . . . 12 ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐵 ≠ +∞)
137132, 136, 26syl2an2 589 . . . . . . . . . . 11 ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒 -∞) = -∞)
138129, 137eqtrd 2203 . . . . . . . . . 10 ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒 -𝑒𝐴) = -∞)
139138breq2d 4001 . . . . . . . . 9 ((𝐴 = +∞ ∧ 𝐵 = -∞) → (0 < (𝐵 +𝑒 -𝑒𝐴) ↔ 0 < -∞))
14018, 139mtbiri 670 . . . . . . . 8 ((𝐴 = +∞ ∧ 𝐵 = -∞) → ¬ 0 < (𝐵 +𝑒 -𝑒𝐴))
141127, 1402falsed 697 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
142141ex 114 . . . . . 6 (𝐴 = +∞ → (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
143 xrltnr 9736 . . . . . . . . . 10 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
144130, 143ax-mp 5 . . . . . . . . 9 ¬ -∞ < -∞
145 breq12 3994 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ -∞ < -∞))
146144, 145mtbiri 670 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
147 oveq1 5860 . . . . . . . . . . . 12 (𝐵 = -∞ → (𝐵 +𝑒 +∞) = (-∞ +𝑒 +∞))
14841, 147sylan9eq 2223 . . . . . . . . . . 11 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒 -𝑒𝐴) = (-∞ +𝑒 +∞))
149 mnfaddpnf 9808 . . . . . . . . . . 11 (-∞ +𝑒 +∞) = 0
150148, 149eqtrdi 2219 . . . . . . . . . 10 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒 -𝑒𝐴) = 0)
151150breq2d 4001 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (0 < (𝐵 +𝑒 -𝑒𝐴) ↔ 0 < 0))
15277, 151mtbiri 670 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 = -∞) → ¬ 0 < (𝐵 +𝑒 -𝑒𝐴))
153146, 1522falsed 697 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
154153ex 114 . . . . . 6 (𝐴 = -∞ → (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
155120, 142, 1543jaoi 1298 . . . . 5 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
1562, 155sylbi 120 . . . 4 (𝐴 ∈ ℝ* → (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
15752, 101, 1563jaod 1299 . . 3 (𝐴 ∈ ℝ* → ((𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
1581, 157syl5bi 151 . 2 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴))))
159158imp 123 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 972   = wceq 1348  wcel 2141  wne 2340   class class class wbr 3989  (class class class)co 5853  cr 7773  0cc0 7774  +∞cpnf 7951  -∞cmnf 7952  *cxr 7953   < clt 7954  cmin 8090  -cneg 8091  -𝑒cxne 9726   +𝑒 cxad 9727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-sub 8092  df-neg 8093  df-xneg 9729  df-xadd 9730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator