Proof of Theorem xposdif
Step | Hyp | Ref
| Expression |
1 | | elxr 9733 |
. . 3
⊢ (𝐵 ∈ ℝ*
↔ (𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 =
-∞)) |
2 | | elxr 9733 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
↔ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) |
3 | | posdif 8374 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
4 | | rexsub 9810 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 +𝑒
-𝑒𝐴) =
(𝐵 − 𝐴)) |
5 | 4 | ancoms 266 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒
-𝑒𝐴) =
(𝐵 − 𝐴)) |
6 | 5 | breq2d 4001 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 <
(𝐵 +𝑒
-𝑒𝐴)
↔ 0 < (𝐵 −
𝐴))) |
7 | 3, 6 | bitr4d 190 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
8 | 7 | ex 114 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
9 | | rexr 7965 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
10 | | pnfnlt 9744 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℝ*
→ ¬ +∞ < 𝐵) |
11 | 10 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ ¬ +∞ < 𝐵) |
12 | 9, 11 | sylan2 284 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → ¬
+∞ < 𝐵) |
13 | | simpl 108 |
. . . . . . . . . 10
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐴 = +∞) |
14 | 13 | breq1d 3999 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ +∞ < 𝐵)) |
15 | 12, 14 | mtbird 668 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → ¬
𝐴 < 𝐵) |
16 | | 0xr 7966 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
17 | | nltmnf 9745 |
. . . . . . . . . 10
⊢ (0 ∈
ℝ* → ¬ 0 < -∞) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . . 9
⊢ ¬ 0
< -∞ |
19 | | xnegeq 9784 |
. . . . . . . . . . . . . 14
⊢ (𝐴 = +∞ →
-𝑒𝐴 =
-𝑒+∞) |
20 | 19 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) →
-𝑒𝐴 =
-𝑒+∞) |
21 | | xnegpnf 9785 |
. . . . . . . . . . . . 13
⊢
-𝑒+∞ = -∞ |
22 | 20, 21 | eqtrdi 2219 |
. . . . . . . . . . . 12
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) →
-𝑒𝐴 =
-∞) |
23 | 22 | oveq2d 5869 |
. . . . . . . . . . 11
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒
-𝑒𝐴) =
(𝐵 +𝑒
-∞)) |
24 | | renepnf 7967 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℝ → 𝐵 ≠ +∞) |
25 | 24 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ +∞) |
26 | | xaddmnf1 9805 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℝ*
∧ 𝐵 ≠ +∞)
→ (𝐵
+𝑒 -∞) = -∞) |
27 | 9, 25, 26 | syl2an2 589 |
. . . . . . . . . . 11
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 -∞)
= -∞) |
28 | 23, 27 | eqtrd 2203 |
. . . . . . . . . 10
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒
-𝑒𝐴) =
-∞) |
29 | 28 | breq2d 4001 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (0 <
(𝐵 +𝑒
-𝑒𝐴)
↔ 0 < -∞)) |
30 | 18, 29 | mtbiri 670 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → ¬ 0
< (𝐵
+𝑒 -𝑒𝐴)) |
31 | 15, 30 | 2falsed 697 |
. . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
32 | 31 | ex 114 |
. . . . . 6
⊢ (𝐴 = +∞ → (𝐵 ∈ ℝ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
33 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐴 = -∞) |
34 | | mnflt 9740 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → -∞
< 𝐵) |
35 | 34 | adantl 275 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → -∞
< 𝐵) |
36 | 33, 35 | eqbrtrd 4011 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐴 < 𝐵) |
37 | | 0ltpnf 9739 |
. . . . . . . . 9
⊢ 0 <
+∞ |
38 | | xnegeq 9784 |
. . . . . . . . . . . . 13
⊢ (𝐴 = -∞ →
-𝑒𝐴 =
-𝑒-∞) |
39 | | xnegmnf 9786 |
. . . . . . . . . . . . 13
⊢
-𝑒-∞ = +∞ |
40 | 38, 39 | eqtrdi 2219 |
. . . . . . . . . . . 12
⊢ (𝐴 = -∞ →
-𝑒𝐴 =
+∞) |
41 | 40 | oveq2d 5869 |
. . . . . . . . . . 11
⊢ (𝐴 = -∞ → (𝐵 +𝑒
-𝑒𝐴) =
(𝐵 +𝑒
+∞)) |
42 | 41 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒
-𝑒𝐴) =
(𝐵 +𝑒
+∞)) |
43 | | renemnf 7968 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℝ → 𝐵 ≠ -∞) |
44 | 43 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ -∞) |
45 | | xaddpnf1 9803 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ*
∧ 𝐵 ≠ -∞)
→ (𝐵
+𝑒 +∞) = +∞) |
46 | 9, 44, 45 | syl2an2 589 |
. . . . . . . . . 10
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 +∞)
= +∞) |
47 | 42, 46 | eqtrd 2203 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒
-𝑒𝐴) =
+∞) |
48 | 37, 47 | breqtrrid 4027 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 0 <
(𝐵 +𝑒
-𝑒𝐴)) |
49 | 36, 48 | 2thd 174 |
. . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
50 | 49 | ex 114 |
. . . . . 6
⊢ (𝐴 = -∞ → (𝐵 ∈ ℝ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
51 | 8, 32, 50 | 3jaoi 1298 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐵 ∈ ℝ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
52 | 2, 51 | sylbi 120 |
. . . 4
⊢ (𝐴 ∈ ℝ*
→ (𝐵 ∈ ℝ
→ (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
53 | | ltpnf 9737 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
54 | 53 | adantr 274 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < +∞) |
55 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐵 = +∞) |
56 | 54, 55 | breqtrrd 4017 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < 𝐵) |
57 | 55 | oveq1d 5868 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 +𝑒
-𝑒𝐴) =
(+∞ +𝑒 -𝑒𝐴)) |
58 | | rexneg 9787 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℝ →
-𝑒𝐴 =
-𝐴) |
59 | | renegcl 8180 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℝ → -𝐴 ∈
ℝ) |
60 | 58, 59 | eqeltrd 2247 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℝ →
-𝑒𝐴
∈ ℝ) |
61 | 60 | rexrd 7969 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ →
-𝑒𝐴
∈ ℝ*) |
62 | 61 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) →
-𝑒𝐴
∈ ℝ*) |
63 | 60 | renemnfd 7971 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ →
-𝑒𝐴 ≠
-∞) |
64 | 63 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) →
-𝑒𝐴 ≠
-∞) |
65 | | xaddpnf2 9804 |
. . . . . . . . . . 11
⊢
((-𝑒𝐴 ∈ ℝ* ∧
-𝑒𝐴 ≠
-∞) → (+∞ +𝑒 -𝑒𝐴) = +∞) |
66 | 62, 64, 65 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (+∞
+𝑒 -𝑒𝐴) = +∞) |
67 | 57, 66 | eqtrd 2203 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 +𝑒
-𝑒𝐴) =
+∞) |
68 | 37, 67 | breqtrrid 4027 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 0 <
(𝐵 +𝑒
-𝑒𝐴)) |
69 | 56, 68 | 2thd 174 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
70 | 69 | ex 114 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
71 | | pnfxr 7972 |
. . . . . . . . . 10
⊢ +∞
∈ ℝ* |
72 | | xrltnr 9736 |
. . . . . . . . . 10
⊢ (+∞
∈ ℝ* → ¬ +∞ <
+∞) |
73 | 71, 72 | ax-mp 5 |
. . . . . . . . 9
⊢ ¬
+∞ < +∞ |
74 | | breq12 3994 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ +∞ <
+∞)) |
75 | 73, 74 | mtbiri 670 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → ¬ 𝐴 < 𝐵) |
76 | | 0re 7920 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
77 | 76 | ltnri 8012 |
. . . . . . . . 9
⊢ ¬ 0
< 0 |
78 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → 𝐵 = +∞) |
79 | 19, 21 | eqtrdi 2219 |
. . . . . . . . . . . . 13
⊢ (𝐴 = +∞ →
-𝑒𝐴 =
-∞) |
80 | 79 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) →
-𝑒𝐴 =
-∞) |
81 | 78, 80 | oveq12d 5871 |
. . . . . . . . . . 11
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐵 +𝑒
-𝑒𝐴) =
(+∞ +𝑒 -∞)) |
82 | | pnfaddmnf 9807 |
. . . . . . . . . . 11
⊢ (+∞
+𝑒 -∞) = 0 |
83 | 81, 82 | eqtrdi 2219 |
. . . . . . . . . 10
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐵 +𝑒
-𝑒𝐴) =
0) |
84 | 83 | breq2d 4001 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → (0 <
(𝐵 +𝑒
-𝑒𝐴)
↔ 0 < 0)) |
85 | 77, 84 | mtbiri 670 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → ¬ 0 <
(𝐵 +𝑒
-𝑒𝐴)) |
86 | 75, 85 | 2falsed 697 |
. . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
87 | 86 | ex 114 |
. . . . . 6
⊢ (𝐴 = +∞ → (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
88 | | mnfltpnf 9742 |
. . . . . . . . 9
⊢ -∞
< +∞ |
89 | | breq12 3994 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ -∞ <
+∞)) |
90 | 88, 89 | mpbiri 167 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → 𝐴 < 𝐵) |
91 | | oveq1 5860 |
. . . . . . . . . . 11
⊢ (𝐵 = +∞ → (𝐵 +𝑒 +∞)
= (+∞ +𝑒 +∞)) |
92 | 41, 91 | sylan9eq 2223 |
. . . . . . . . . 10
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐵 +𝑒
-𝑒𝐴) =
(+∞ +𝑒 +∞)) |
93 | | pnfnemnf 7974 |
. . . . . . . . . . 11
⊢ +∞
≠ -∞ |
94 | | xaddpnf1 9803 |
. . . . . . . . . . 11
⊢
((+∞ ∈ ℝ* ∧ +∞ ≠ -∞)
→ (+∞ +𝑒 +∞) = +∞) |
95 | 71, 93, 94 | mp2an 424 |
. . . . . . . . . 10
⊢ (+∞
+𝑒 +∞) = +∞ |
96 | 92, 95 | eqtrdi 2219 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐵 +𝑒
-𝑒𝐴) =
+∞) |
97 | 37, 96 | breqtrrid 4027 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → 0 <
(𝐵 +𝑒
-𝑒𝐴)) |
98 | 90, 97 | 2thd 174 |
. . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
99 | 98 | ex 114 |
. . . . . 6
⊢ (𝐴 = -∞ → (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
100 | 70, 87, 99 | 3jaoi 1298 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
101 | 2, 100 | sylbi 120 |
. . . 4
⊢ (𝐴 ∈ ℝ*
→ (𝐵 = +∞ →
(𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
102 | | rexr 7965 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
103 | 102 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐴 ∈
ℝ*) |
104 | | nltmnf 9745 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ*
→ ¬ 𝐴 <
-∞) |
105 | 103, 104 | syl 14 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞) |
106 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 = -∞) |
107 | 106 | breq2d 4001 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 𝐴 < -∞)) |
108 | 105, 107 | mtbird 668 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵) |
109 | 106 | oveq1d 5868 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 +𝑒
-𝑒𝐴) =
(-∞ +𝑒 -𝑒𝐴)) |
110 | | rexr 7965 |
. . . . . . . . . . . . . 14
⊢
(-𝑒𝐴 ∈ ℝ →
-𝑒𝐴
∈ ℝ*) |
111 | | renepnf 7967 |
. . . . . . . . . . . . . 14
⊢
(-𝑒𝐴 ∈ ℝ →
-𝑒𝐴 ≠
+∞) |
112 | | xaddmnf2 9806 |
. . . . . . . . . . . . . 14
⊢
((-𝑒𝐴 ∈ ℝ* ∧
-𝑒𝐴 ≠
+∞) → (-∞ +𝑒 -𝑒𝐴) = -∞) |
113 | 110, 111,
112 | syl2anc 409 |
. . . . . . . . . . . . 13
⊢
(-𝑒𝐴 ∈ ℝ → (-∞
+𝑒 -𝑒𝐴) = -∞) |
114 | 60, 113 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ → (-∞
+𝑒 -𝑒𝐴) = -∞) |
115 | 114 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (-∞
+𝑒 -𝑒𝐴) = -∞) |
116 | 109, 115 | eqtrd 2203 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 +𝑒
-𝑒𝐴) =
-∞) |
117 | 116 | breq2d 4001 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (0 <
(𝐵 +𝑒
-𝑒𝐴)
↔ 0 < -∞)) |
118 | 18, 117 | mtbiri 670 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 0 <
(𝐵 +𝑒
-𝑒𝐴)) |
119 | 108, 118 | 2falsed 697 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
120 | 119 | ex 114 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
121 | | eleq1 2233 |
. . . . . . . . . . . 12
⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ*
↔ +∞ ∈ ℝ*)) |
122 | 71, 121 | mpbiri 167 |
. . . . . . . . . . 11
⊢ (𝐴 = +∞ → 𝐴 ∈
ℝ*) |
123 | 122 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐴 ∈
ℝ*) |
124 | 123, 104 | syl 14 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞) |
125 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐵 = -∞) |
126 | 125 | breq2d 4001 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 𝐴 < -∞)) |
127 | 124, 126 | mtbird 668 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵) |
128 | 79 | oveq2d 5869 |
. . . . . . . . . . . 12
⊢ (𝐴 = +∞ → (𝐵 +𝑒
-𝑒𝐴) =
(𝐵 +𝑒
-∞)) |
129 | 128 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒
-𝑒𝐴) =
(𝐵 +𝑒
-∞)) |
130 | | mnfxr 7976 |
. . . . . . . . . . . . 13
⊢ -∞
∈ ℝ* |
131 | | eleq1 2233 |
. . . . . . . . . . . . 13
⊢ (𝐵 = -∞ → (𝐵 ∈ ℝ*
↔ -∞ ∈ ℝ*)) |
132 | 130, 131 | mpbiri 167 |
. . . . . . . . . . . 12
⊢ (𝐵 = -∞ → 𝐵 ∈
ℝ*) |
133 | | mnfnepnf 7975 |
. . . . . . . . . . . . . 14
⊢ -∞
≠ +∞ |
134 | | neeq1 2353 |
. . . . . . . . . . . . . 14
⊢ (𝐵 = -∞ → (𝐵 ≠ +∞ ↔ -∞
≠ +∞)) |
135 | 133, 134 | mpbiri 167 |
. . . . . . . . . . . . 13
⊢ (𝐵 = -∞ → 𝐵 ≠ +∞) |
136 | 135 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐵 ≠ +∞) |
137 | 132, 136,
26 | syl2an2 589 |
. . . . . . . . . . 11
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒 -∞)
= -∞) |
138 | 129, 137 | eqtrd 2203 |
. . . . . . . . . 10
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒
-𝑒𝐴) =
-∞) |
139 | 138 | breq2d 4001 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (0 <
(𝐵 +𝑒
-𝑒𝐴)
↔ 0 < -∞)) |
140 | 18, 139 | mtbiri 670 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → ¬ 0 <
(𝐵 +𝑒
-𝑒𝐴)) |
141 | 127, 140 | 2falsed 697 |
. . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
142 | 141 | ex 114 |
. . . . . 6
⊢ (𝐴 = +∞ → (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
143 | | xrltnr 9736 |
. . . . . . . . . 10
⊢ (-∞
∈ ℝ* → ¬ -∞ <
-∞) |
144 | 130, 143 | ax-mp 5 |
. . . . . . . . 9
⊢ ¬
-∞ < -∞ |
145 | | breq12 3994 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ -∞ <
-∞)) |
146 | 144, 145 | mtbiri 670 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵) |
147 | | oveq1 5860 |
. . . . . . . . . . . 12
⊢ (𝐵 = -∞ → (𝐵 +𝑒 +∞)
= (-∞ +𝑒 +∞)) |
148 | 41, 147 | sylan9eq 2223 |
. . . . . . . . . . 11
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒
-𝑒𝐴) =
(-∞ +𝑒 +∞)) |
149 | | mnfaddpnf 9808 |
. . . . . . . . . . 11
⊢ (-∞
+𝑒 +∞) = 0 |
150 | 148, 149 | eqtrdi 2219 |
. . . . . . . . . 10
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒
-𝑒𝐴) =
0) |
151 | 150 | breq2d 4001 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (0 <
(𝐵 +𝑒
-𝑒𝐴)
↔ 0 < 0)) |
152 | 77, 151 | mtbiri 670 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → ¬ 0 <
(𝐵 +𝑒
-𝑒𝐴)) |
153 | 146, 152 | 2falsed 697 |
. . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
154 | 153 | ex 114 |
. . . . . 6
⊢ (𝐴 = -∞ → (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
155 | 120, 142,
154 | 3jaoi 1298 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
156 | 2, 155 | sylbi 120 |
. . . 4
⊢ (𝐴 ∈ ℝ*
→ (𝐵 = -∞ →
(𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
157 | 52, 101, 156 | 3jaod 1299 |
. . 3
⊢ (𝐴 ∈ ℝ*
→ ((𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 = -∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
158 | 1, 157 | syl5bi 151 |
. 2
⊢ (𝐴 ∈ ℝ*
→ (𝐵 ∈
ℝ* → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
159 | 158 | imp 123 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |