Proof of Theorem xposdif
| Step | Hyp | Ref
| Expression |
| 1 | | elxr 9851 |
. . 3
⊢ (𝐵 ∈ ℝ*
↔ (𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 =
-∞)) |
| 2 | | elxr 9851 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
↔ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) |
| 3 | | posdif 8482 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
| 4 | | rexsub 9928 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 +𝑒
-𝑒𝐴) =
(𝐵 − 𝐴)) |
| 5 | 4 | ancoms 268 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒
-𝑒𝐴) =
(𝐵 − 𝐴)) |
| 6 | 5 | breq2d 4045 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 <
(𝐵 +𝑒
-𝑒𝐴)
↔ 0 < (𝐵 −
𝐴))) |
| 7 | 3, 6 | bitr4d 191 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
| 8 | 7 | ex 115 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 9 | | rexr 8072 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
| 10 | | pnfnlt 9862 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℝ*
→ ¬ +∞ < 𝐵) |
| 11 | 10 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ ¬ +∞ < 𝐵) |
| 12 | 9, 11 | sylan2 286 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → ¬
+∞ < 𝐵) |
| 13 | | simpl 109 |
. . . . . . . . . 10
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐴 = +∞) |
| 14 | 13 | breq1d 4043 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ +∞ < 𝐵)) |
| 15 | 12, 14 | mtbird 674 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → ¬
𝐴 < 𝐵) |
| 16 | | 0xr 8073 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
| 17 | | nltmnf 9863 |
. . . . . . . . . 10
⊢ (0 ∈
ℝ* → ¬ 0 < -∞) |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . . 9
⊢ ¬ 0
< -∞ |
| 19 | | xnegeq 9902 |
. . . . . . . . . . . . . 14
⊢ (𝐴 = +∞ →
-𝑒𝐴 =
-𝑒+∞) |
| 20 | 19 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) →
-𝑒𝐴 =
-𝑒+∞) |
| 21 | | xnegpnf 9903 |
. . . . . . . . . . . . 13
⊢
-𝑒+∞ = -∞ |
| 22 | 20, 21 | eqtrdi 2245 |
. . . . . . . . . . . 12
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) →
-𝑒𝐴 =
-∞) |
| 23 | 22 | oveq2d 5938 |
. . . . . . . . . . 11
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒
-𝑒𝐴) =
(𝐵 +𝑒
-∞)) |
| 24 | | renepnf 8074 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℝ → 𝐵 ≠ +∞) |
| 25 | 24 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ +∞) |
| 26 | | xaddmnf1 9923 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℝ*
∧ 𝐵 ≠ +∞)
→ (𝐵
+𝑒 -∞) = -∞) |
| 27 | 9, 25, 26 | syl2an2 594 |
. . . . . . . . . . 11
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 -∞)
= -∞) |
| 28 | 23, 27 | eqtrd 2229 |
. . . . . . . . . 10
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒
-𝑒𝐴) =
-∞) |
| 29 | 28 | breq2d 4045 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (0 <
(𝐵 +𝑒
-𝑒𝐴)
↔ 0 < -∞)) |
| 30 | 18, 29 | mtbiri 676 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → ¬ 0
< (𝐵
+𝑒 -𝑒𝐴)) |
| 31 | 15, 30 | 2falsed 703 |
. . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
| 32 | 31 | ex 115 |
. . . . . 6
⊢ (𝐴 = +∞ → (𝐵 ∈ ℝ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 33 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐴 = -∞) |
| 34 | | mnflt 9858 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → -∞
< 𝐵) |
| 35 | 34 | adantl 277 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → -∞
< 𝐵) |
| 36 | 33, 35 | eqbrtrd 4055 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐴 < 𝐵) |
| 37 | | 0ltpnf 9857 |
. . . . . . . . 9
⊢ 0 <
+∞ |
| 38 | | xnegeq 9902 |
. . . . . . . . . . . . 13
⊢ (𝐴 = -∞ →
-𝑒𝐴 =
-𝑒-∞) |
| 39 | | xnegmnf 9904 |
. . . . . . . . . . . . 13
⊢
-𝑒-∞ = +∞ |
| 40 | 38, 39 | eqtrdi 2245 |
. . . . . . . . . . . 12
⊢ (𝐴 = -∞ →
-𝑒𝐴 =
+∞) |
| 41 | 40 | oveq2d 5938 |
. . . . . . . . . . 11
⊢ (𝐴 = -∞ → (𝐵 +𝑒
-𝑒𝐴) =
(𝐵 +𝑒
+∞)) |
| 42 | 41 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒
-𝑒𝐴) =
(𝐵 +𝑒
+∞)) |
| 43 | | renemnf 8075 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℝ → 𝐵 ≠ -∞) |
| 44 | 43 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐵 ≠ -∞) |
| 45 | | xaddpnf1 9921 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ*
∧ 𝐵 ≠ -∞)
→ (𝐵
+𝑒 +∞) = +∞) |
| 46 | 9, 44, 45 | syl2an2 594 |
. . . . . . . . . 10
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 +∞)
= +∞) |
| 47 | 42, 46 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒
-𝑒𝐴) =
+∞) |
| 48 | 37, 47 | breqtrrid 4071 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 0 <
(𝐵 +𝑒
-𝑒𝐴)) |
| 49 | 36, 48 | 2thd 175 |
. . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
| 50 | 49 | ex 115 |
. . . . . 6
⊢ (𝐴 = -∞ → (𝐵 ∈ ℝ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 51 | 8, 32, 50 | 3jaoi 1314 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐵 ∈ ℝ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 52 | 2, 51 | sylbi 121 |
. . . 4
⊢ (𝐴 ∈ ℝ*
→ (𝐵 ∈ ℝ
→ (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 53 | | ltpnf 9855 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
| 54 | 53 | adantr 276 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < +∞) |
| 55 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐵 = +∞) |
| 56 | 54, 55 | breqtrrd 4061 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < 𝐵) |
| 57 | 55 | oveq1d 5937 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 +𝑒
-𝑒𝐴) =
(+∞ +𝑒 -𝑒𝐴)) |
| 58 | | rexneg 9905 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℝ →
-𝑒𝐴 =
-𝐴) |
| 59 | | renegcl 8287 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℝ → -𝐴 ∈
ℝ) |
| 60 | 58, 59 | eqeltrd 2273 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℝ →
-𝑒𝐴
∈ ℝ) |
| 61 | 60 | rexrd 8076 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ →
-𝑒𝐴
∈ ℝ*) |
| 62 | 61 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) →
-𝑒𝐴
∈ ℝ*) |
| 63 | 60 | renemnfd 8078 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ →
-𝑒𝐴 ≠
-∞) |
| 64 | 63 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) →
-𝑒𝐴 ≠
-∞) |
| 65 | | xaddpnf2 9922 |
. . . . . . . . . . 11
⊢
((-𝑒𝐴 ∈ ℝ* ∧
-𝑒𝐴 ≠
-∞) → (+∞ +𝑒 -𝑒𝐴) = +∞) |
| 66 | 62, 64, 65 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (+∞
+𝑒 -𝑒𝐴) = +∞) |
| 67 | 57, 66 | eqtrd 2229 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 +𝑒
-𝑒𝐴) =
+∞) |
| 68 | 37, 67 | breqtrrid 4071 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 0 <
(𝐵 +𝑒
-𝑒𝐴)) |
| 69 | 56, 68 | 2thd 175 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
| 70 | 69 | ex 115 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 71 | | pnfxr 8079 |
. . . . . . . . . 10
⊢ +∞
∈ ℝ* |
| 72 | | xrltnr 9854 |
. . . . . . . . . 10
⊢ (+∞
∈ ℝ* → ¬ +∞ <
+∞) |
| 73 | 71, 72 | ax-mp 5 |
. . . . . . . . 9
⊢ ¬
+∞ < +∞ |
| 74 | | breq12 4038 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ +∞ <
+∞)) |
| 75 | 73, 74 | mtbiri 676 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → ¬ 𝐴 < 𝐵) |
| 76 | | 0re 8026 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ |
| 77 | 76 | ltnri 8119 |
. . . . . . . . 9
⊢ ¬ 0
< 0 |
| 78 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → 𝐵 = +∞) |
| 79 | 19, 21 | eqtrdi 2245 |
. . . . . . . . . . . . 13
⊢ (𝐴 = +∞ →
-𝑒𝐴 =
-∞) |
| 80 | 79 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) →
-𝑒𝐴 =
-∞) |
| 81 | 78, 80 | oveq12d 5940 |
. . . . . . . . . . 11
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐵 +𝑒
-𝑒𝐴) =
(+∞ +𝑒 -∞)) |
| 82 | | pnfaddmnf 9925 |
. . . . . . . . . . 11
⊢ (+∞
+𝑒 -∞) = 0 |
| 83 | 81, 82 | eqtrdi 2245 |
. . . . . . . . . 10
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐵 +𝑒
-𝑒𝐴) =
0) |
| 84 | 83 | breq2d 4045 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → (0 <
(𝐵 +𝑒
-𝑒𝐴)
↔ 0 < 0)) |
| 85 | 77, 84 | mtbiri 676 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → ¬ 0 <
(𝐵 +𝑒
-𝑒𝐴)) |
| 86 | 75, 85 | 2falsed 703 |
. . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
| 87 | 86 | ex 115 |
. . . . . 6
⊢ (𝐴 = +∞ → (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 88 | | mnfltpnf 9860 |
. . . . . . . . 9
⊢ -∞
< +∞ |
| 89 | | breq12 4038 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ -∞ <
+∞)) |
| 90 | 88, 89 | mpbiri 168 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → 𝐴 < 𝐵) |
| 91 | | oveq1 5929 |
. . . . . . . . . . 11
⊢ (𝐵 = +∞ → (𝐵 +𝑒 +∞)
= (+∞ +𝑒 +∞)) |
| 92 | 41, 91 | sylan9eq 2249 |
. . . . . . . . . 10
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐵 +𝑒
-𝑒𝐴) =
(+∞ +𝑒 +∞)) |
| 93 | | pnfnemnf 8081 |
. . . . . . . . . . 11
⊢ +∞
≠ -∞ |
| 94 | | xaddpnf1 9921 |
. . . . . . . . . . 11
⊢
((+∞ ∈ ℝ* ∧ +∞ ≠ -∞)
→ (+∞ +𝑒 +∞) = +∞) |
| 95 | 71, 93, 94 | mp2an 426 |
. . . . . . . . . 10
⊢ (+∞
+𝑒 +∞) = +∞ |
| 96 | 92, 95 | eqtrdi 2245 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐵 +𝑒
-𝑒𝐴) =
+∞) |
| 97 | 37, 96 | breqtrrid 4071 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → 0 <
(𝐵 +𝑒
-𝑒𝐴)) |
| 98 | 90, 97 | 2thd 175 |
. . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
| 99 | 98 | ex 115 |
. . . . . 6
⊢ (𝐴 = -∞ → (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 100 | 70, 87, 99 | 3jaoi 1314 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐵 = +∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 101 | 2, 100 | sylbi 121 |
. . . 4
⊢ (𝐴 ∈ ℝ*
→ (𝐵 = +∞ →
(𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 102 | | rexr 8072 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
| 103 | 102 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐴 ∈
ℝ*) |
| 104 | | nltmnf 9863 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ*
→ ¬ 𝐴 <
-∞) |
| 105 | 103, 104 | syl 14 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞) |
| 106 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 = -∞) |
| 107 | 106 | breq2d 4045 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 𝐴 < -∞)) |
| 108 | 105, 107 | mtbird 674 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵) |
| 109 | 106 | oveq1d 5937 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 +𝑒
-𝑒𝐴) =
(-∞ +𝑒 -𝑒𝐴)) |
| 110 | | rexr 8072 |
. . . . . . . . . . . . . 14
⊢
(-𝑒𝐴 ∈ ℝ →
-𝑒𝐴
∈ ℝ*) |
| 111 | | renepnf 8074 |
. . . . . . . . . . . . . 14
⊢
(-𝑒𝐴 ∈ ℝ →
-𝑒𝐴 ≠
+∞) |
| 112 | | xaddmnf2 9924 |
. . . . . . . . . . . . . 14
⊢
((-𝑒𝐴 ∈ ℝ* ∧
-𝑒𝐴 ≠
+∞) → (-∞ +𝑒 -𝑒𝐴) = -∞) |
| 113 | 110, 111,
112 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢
(-𝑒𝐴 ∈ ℝ → (-∞
+𝑒 -𝑒𝐴) = -∞) |
| 114 | 60, 113 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ → (-∞
+𝑒 -𝑒𝐴) = -∞) |
| 115 | 114 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (-∞
+𝑒 -𝑒𝐴) = -∞) |
| 116 | 109, 115 | eqtrd 2229 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐵 +𝑒
-𝑒𝐴) =
-∞) |
| 117 | 116 | breq2d 4045 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (0 <
(𝐵 +𝑒
-𝑒𝐴)
↔ 0 < -∞)) |
| 118 | 18, 117 | mtbiri 676 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 0 <
(𝐵 +𝑒
-𝑒𝐴)) |
| 119 | 108, 118 | 2falsed 703 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
| 120 | 119 | ex 115 |
. . . . . 6
⊢ (𝐴 ∈ ℝ → (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 121 | | eleq1 2259 |
. . . . . . . . . . . 12
⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ*
↔ +∞ ∈ ℝ*)) |
| 122 | 71, 121 | mpbiri 168 |
. . . . . . . . . . 11
⊢ (𝐴 = +∞ → 𝐴 ∈
ℝ*) |
| 123 | 122 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐴 ∈
ℝ*) |
| 124 | 123, 104 | syl 14 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞) |
| 125 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐵 = -∞) |
| 126 | 125 | breq2d 4045 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 𝐴 < -∞)) |
| 127 | 124, 126 | mtbird 674 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵) |
| 128 | 79 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (𝐴 = +∞ → (𝐵 +𝑒
-𝑒𝐴) =
(𝐵 +𝑒
-∞)) |
| 129 | 128 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒
-𝑒𝐴) =
(𝐵 +𝑒
-∞)) |
| 130 | | mnfxr 8083 |
. . . . . . . . . . . . 13
⊢ -∞
∈ ℝ* |
| 131 | | eleq1 2259 |
. . . . . . . . . . . . 13
⊢ (𝐵 = -∞ → (𝐵 ∈ ℝ*
↔ -∞ ∈ ℝ*)) |
| 132 | 130, 131 | mpbiri 168 |
. . . . . . . . . . . 12
⊢ (𝐵 = -∞ → 𝐵 ∈
ℝ*) |
| 133 | | mnfnepnf 8082 |
. . . . . . . . . . . . . 14
⊢ -∞
≠ +∞ |
| 134 | | neeq1 2380 |
. . . . . . . . . . . . . 14
⊢ (𝐵 = -∞ → (𝐵 ≠ +∞ ↔ -∞
≠ +∞)) |
| 135 | 133, 134 | mpbiri 168 |
. . . . . . . . . . . . 13
⊢ (𝐵 = -∞ → 𝐵 ≠ +∞) |
| 136 | 135 | adantl 277 |
. . . . . . . . . . . 12
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → 𝐵 ≠ +∞) |
| 137 | 132, 136,
26 | syl2an2 594 |
. . . . . . . . . . 11
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒 -∞)
= -∞) |
| 138 | 129, 137 | eqtrd 2229 |
. . . . . . . . . 10
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒
-𝑒𝐴) =
-∞) |
| 139 | 138 | breq2d 4045 |
. . . . . . . . 9
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (0 <
(𝐵 +𝑒
-𝑒𝐴)
↔ 0 < -∞)) |
| 140 | 18, 139 | mtbiri 676 |
. . . . . . . 8
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → ¬ 0 <
(𝐵 +𝑒
-𝑒𝐴)) |
| 141 | 127, 140 | 2falsed 703 |
. . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
| 142 | 141 | ex 115 |
. . . . . 6
⊢ (𝐴 = +∞ → (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 143 | | xrltnr 9854 |
. . . . . . . . . 10
⊢ (-∞
∈ ℝ* → ¬ -∞ <
-∞) |
| 144 | 130, 143 | ax-mp 5 |
. . . . . . . . 9
⊢ ¬
-∞ < -∞ |
| 145 | | breq12 4038 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ -∞ <
-∞)) |
| 146 | 144, 145 | mtbiri 676 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵) |
| 147 | | oveq1 5929 |
. . . . . . . . . . . 12
⊢ (𝐵 = -∞ → (𝐵 +𝑒 +∞)
= (-∞ +𝑒 +∞)) |
| 148 | 41, 147 | sylan9eq 2249 |
. . . . . . . . . . 11
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒
-𝑒𝐴) =
(-∞ +𝑒 +∞)) |
| 149 | | mnfaddpnf 9926 |
. . . . . . . . . . 11
⊢ (-∞
+𝑒 +∞) = 0 |
| 150 | 148, 149 | eqtrdi 2245 |
. . . . . . . . . 10
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐵 +𝑒
-𝑒𝐴) =
0) |
| 151 | 150 | breq2d 4045 |
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (0 <
(𝐵 +𝑒
-𝑒𝐴)
↔ 0 < 0)) |
| 152 | 77, 151 | mtbiri 676 |
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → ¬ 0 <
(𝐵 +𝑒
-𝑒𝐴)) |
| 153 | 146, 152 | 2falsed 703 |
. . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |
| 154 | 153 | ex 115 |
. . . . . 6
⊢ (𝐴 = -∞ → (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 155 | 120, 142,
154 | 3jaoi 1314 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 156 | 2, 155 | sylbi 121 |
. . . 4
⊢ (𝐴 ∈ ℝ*
→ (𝐵 = -∞ →
(𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 157 | 52, 101, 156 | 3jaod 1315 |
. . 3
⊢ (𝐴 ∈ ℝ*
→ ((𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 = -∞) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 158 | 1, 157 | biimtrid 152 |
. 2
⊢ (𝐴 ∈ ℝ*
→ (𝐵 ∈
ℝ* → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴)))) |
| 159 | 158 | imp 124 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒
-𝑒𝐴))) |