ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xltadd1 GIF version

Theorem xltadd1 9659
Description: Extended real version of ltadd1 8191. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.)
Assertion
Ref Expression
xltadd1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))

Proof of Theorem xltadd1
StepHypRef Expression
1 simplr 519 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2 simpr 109 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
3 simpll3 1022 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ)
4 ltadd1 8191 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)))
5 simp1 981 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
6 simp3 983 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
75, 6rexaddd 9637 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) = (𝐴 + 𝐶))
8 simp2 982 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
98, 6rexaddd 9637 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
107, 9breq12d 3942 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶) ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)))
114, 10bitr4d 190 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
121, 2, 3, 11syl3anc 1216 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
13 ltpnf 9567 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < +∞)
1413ad2antlr 480 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → 𝐴 < +∞)
15 breq2 3933 . . . . . 6 (𝐵 = +∞ → (𝐴 < 𝐵𝐴 < +∞))
1615adantl 275 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 < 𝐵𝐴 < +∞))
1714, 16mpbird 166 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
18 simplr 519 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ)
19 simpll3 1022 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → 𝐶 ∈ ℝ)
20 rexadd 9635 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) = (𝐴 + 𝐶))
21 readdcl 7746 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
2220, 21eqeltrd 2216 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) ∈ ℝ)
2318, 19, 22syl2anc 408 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) ∈ ℝ)
24 ltpnf 9567 . . . . . 6 ((𝐴 +𝑒 𝐶) ∈ ℝ → (𝐴 +𝑒 𝐶) < +∞)
2523, 24syl 14 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) < +∞)
26 oveq1 5781 . . . . . . 7 (𝐵 = +∞ → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
2726adantl 275 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
28 rexr 7811 . . . . . . . 8 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
29 renemnf 7814 . . . . . . . 8 (𝐶 ∈ ℝ → 𝐶 ≠ -∞)
30 xaddpnf2 9630 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (+∞ +𝑒 𝐶) = +∞)
3128, 29, 30syl2anc 408 . . . . . . 7 (𝐶 ∈ ℝ → (+∞ +𝑒 𝐶) = +∞)
3219, 31syl 14 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (+∞ +𝑒 𝐶) = +∞)
3327, 32eqtrd 2172 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
3425, 33breqtrrd 3956 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))
3517, 342thd 174 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
36 mnfle 9578 . . . . . . . 8 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
37363ad2ant1 1002 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → -∞ ≤ 𝐴)
3837ad2antrr 479 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → -∞ ≤ 𝐴)
39 mnfxr 7822 . . . . . . 7 -∞ ∈ ℝ*
40 simpll1 1020 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
41 xrlenlt 7829 . . . . . . 7 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞))
4239, 40, 41sylancr 410 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞))
4338, 42mpbid 146 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
44 breq2 3933 . . . . . 6 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
4544adantl 275 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
4643, 45mtbird 662 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
47283ad2ant3 1004 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐶 ∈ ℝ*)
4847ad2antrr 479 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → 𝐶 ∈ ℝ*)
49 xaddcl 9643 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
5040, 48, 49syl2anc 408 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
51 mnfle 9578 . . . . . . 7 ((𝐴 +𝑒 𝐶) ∈ ℝ* → -∞ ≤ (𝐴 +𝑒 𝐶))
5250, 51syl 14 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → -∞ ≤ (𝐴 +𝑒 𝐶))
53 xrlenlt 7829 . . . . . . 7 ((-∞ ∈ ℝ* ∧ (𝐴 +𝑒 𝐶) ∈ ℝ*) → (-∞ ≤ (𝐴 +𝑒 𝐶) ↔ ¬ (𝐴 +𝑒 𝐶) < -∞))
5439, 50, 53sylancr 410 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (-∞ ≤ (𝐴 +𝑒 𝐶) ↔ ¬ (𝐴 +𝑒 𝐶) < -∞))
5552, 54mpbid 146 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → ¬ (𝐴 +𝑒 𝐶) < -∞)
56 simpr 109 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → 𝐵 = -∞)
5756oveq1d 5789 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐶) = (-∞ +𝑒 𝐶))
58 renepnf 7813 . . . . . . . . . 10 (𝐶 ∈ ℝ → 𝐶 ≠ +∞)
59583ad2ant3 1004 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐶 ≠ +∞)
6059ad2antrr 479 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → 𝐶 ≠ +∞)
61 xaddmnf2 9632 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐶 ≠ +∞) → (-∞ +𝑒 𝐶) = -∞)
6248, 60, 61syl2anc 408 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (-∞ +𝑒 𝐶) = -∞)
6357, 62eqtrd 2172 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐶) = -∞)
6463breq2d 3941 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → ((𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶) ↔ (𝐴 +𝑒 𝐶) < -∞))
6555, 64mtbird 662 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → ¬ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))
6646, 652falsed 691 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
67 elxr 9563 . . . . . 6 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
6867biimpi 119 . . . . 5 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
69683ad2ant2 1003 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
7069adantr 274 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
7112, 35, 66, 70mpjao3dan 1285 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
72 simpl2 985 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
73 pnfge 9575 . . . . . 6 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
7472, 73syl 14 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞)
75 pnfxr 7818 . . . . . . 7 +∞ ∈ ℝ*
7675a1i 9 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → +∞ ∈ ℝ*)
77 xrlenlt 7829 . . . . . 6 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ≤ +∞ ↔ ¬ +∞ < 𝐵))
7872, 76, 77syl2anc 408 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐵 ≤ +∞ ↔ ¬ +∞ < 𝐵))
7974, 78mpbid 146 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ +∞ < 𝐵)
80 simpr 109 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 = +∞)
8180breq1d 3939 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
8279, 81mtbird 662 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ 𝐴 < 𝐵)
8347adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐶 ∈ ℝ*)
84 xaddcl 9643 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
8572, 83, 84syl2anc 408 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
86 pnfge 9575 . . . . . . 7 ((𝐵 +𝑒 𝐶) ∈ ℝ* → (𝐵 +𝑒 𝐶) ≤ +∞)
8785, 86syl 14 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐶) ≤ +∞)
88293ad2ant3 1004 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐶 ≠ -∞)
8988adantr 274 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐶 ≠ -∞)
9083, 89, 30syl2anc 408 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (+∞ +𝑒 𝐶) = +∞)
9187, 90breqtrrd 3956 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐶) ≤ (+∞ +𝑒 𝐶))
92 xaddcl 9643 . . . . . . 7 ((+∞ ∈ ℝ*𝐶 ∈ ℝ*) → (+∞ +𝑒 𝐶) ∈ ℝ*)
9375, 83, 92sylancr 410 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (+∞ +𝑒 𝐶) ∈ ℝ*)
94 xrlenlt 7829 . . . . . 6 (((𝐵 +𝑒 𝐶) ∈ ℝ* ∧ (+∞ +𝑒 𝐶) ∈ ℝ*) → ((𝐵 +𝑒 𝐶) ≤ (+∞ +𝑒 𝐶) ↔ ¬ (+∞ +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
9585, 93, 94syl2anc 408 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → ((𝐵 +𝑒 𝐶) ≤ (+∞ +𝑒 𝐶) ↔ ¬ (+∞ +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
9691, 95mpbid 146 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ (+∞ +𝑒 𝐶) < (𝐵 +𝑒 𝐶))
9780oveq1d 5789 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
9897breq1d 3939 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → ((𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶) ↔ (+∞ +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
9996, 98mtbird 662 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))
10082, 992falsed 691 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
101 simplr 519 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → 𝐴 = -∞)
102 mnflt 9569 . . . . . 6 (𝐵 ∈ ℝ → -∞ < 𝐵)
103102adantl 275 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → -∞ < 𝐵)
104101, 103eqbrtrd 3950 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → 𝐴 < 𝐵)
105101oveq1d 5789 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐶) = (-∞ +𝑒 𝐶))
106 simpll3 1022 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ)
107106, 28syl 14 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ*)
108106, 58syl 14 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → 𝐶 ≠ +∞)
109107, 108, 61syl2anc 408 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → (-∞ +𝑒 𝐶) = -∞)
110105, 109eqtrd 2172 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐶) = -∞)
111 simpr 109 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
112 rexadd 9635 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
113 readdcl 7746 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
114112, 113eqeltrd 2216 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) ∈ ℝ)
115111, 106, 114syl2anc 408 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 𝐶) ∈ ℝ)
116 mnflt 9569 . . . . . 6 ((𝐵 +𝑒 𝐶) ∈ ℝ → -∞ < (𝐵 +𝑒 𝐶))
117115, 116syl 14 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → -∞ < (𝐵 +𝑒 𝐶))
118110, 117eqbrtrd 3950 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))
119104, 1182thd 174 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
120 simplr 519 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → 𝐴 = -∞)
121 simpr 109 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → 𝐵 = +∞)
122120, 121breq12d 3942 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ -∞ < +∞))
123 oveq1 5781 . . . . . . 7 (𝐴 = -∞ → (𝐴 +𝑒 𝐶) = (-∞ +𝑒 𝐶))
12447, 59, 61syl2anc 408 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (-∞ +𝑒 𝐶) = -∞)
125123, 124sylan9eqr 2194 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐶) = -∞)
126125adantr 274 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) = -∞)
12726adantl 275 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
12847, 88, 30syl2anc 408 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (+∞ +𝑒 𝐶) = +∞)
129128ad2antrr 479 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → (+∞ +𝑒 𝐶) = +∞)
130127, 129eqtrd 2172 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
131126, 130breq12d 3942 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶) ↔ -∞ < +∞))
132122, 131bitr4d 190 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
133 simplr 519 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → 𝐴 = -∞)
134 simpr 109 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → 𝐵 = -∞)
135133, 134breq12d 3942 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ -∞ < -∞))
136124ad2antrr 479 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → (-∞ +𝑒 𝐶) = -∞)
137123eqeq1d 2148 . . . . . . 7 (𝐴 = -∞ → ((𝐴 +𝑒 𝐶) = -∞ ↔ (-∞ +𝑒 𝐶) = -∞))
138137ad2antlr 480 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → ((𝐴 +𝑒 𝐶) = -∞ ↔ (-∞ +𝑒 𝐶) = -∞))
139136, 138mpbird 166 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) = -∞)
140134oveq1d 5789 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐶) = (-∞ +𝑒 𝐶))
141140, 136eqtrd 2172 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐶) = -∞)
142139, 141breq12d 3942 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → ((𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶) ↔ -∞ < -∞))
143135, 142bitr4d 190 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
14469adantr 274 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
145119, 132, 143, 144mpjao3dan 1285 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
146 elxr 9563 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
147146biimpi 119 . . 3 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1481473ad2ant1 1002 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
14971, 100, 145, 148mpjao3dan 1285 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 961  w3a 962   = wceq 1331  wcel 1480  wne 2308   class class class wbr 3929  (class class class)co 5774  cr 7619   + caddc 7623  +∞cpnf 7797  -∞cmnf 7798  *cxr 7799   < clt 7800  cle 7801   +𝑒 cxad 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-i2m1 7725  ax-0id 7728  ax-rnegex 7729  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-xadd 9560
This theorem is referenced by:  xltadd2  9660  xlt2add  9663  xrmaxaddlem  11029
  Copyright terms: Public domain W3C validator