ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xltadd1 GIF version

Theorem xltadd1 9833
Description: Extended real version of ltadd1 8348. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.)
Assertion
Ref Expression
xltadd1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))

Proof of Theorem xltadd1
StepHypRef Expression
1 simplr 525 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2 simpr 109 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
3 simpll3 1033 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ)
4 ltadd1 8348 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)))
5 simp1 992 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
6 simp3 994 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
75, 6rexaddd 9811 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) = (𝐴 + 𝐶))
8 simp2 993 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
98, 6rexaddd 9811 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
107, 9breq12d 4002 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶) ↔ (𝐴 + 𝐶) < (𝐵 + 𝐶)))
114, 10bitr4d 190 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
121, 2, 3, 11syl3anc 1233 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
13 ltpnf 9737 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < +∞)
1413ad2antlr 486 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → 𝐴 < +∞)
15 breq2 3993 . . . . . 6 (𝐵 = +∞ → (𝐴 < 𝐵𝐴 < +∞))
1615adantl 275 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 < 𝐵𝐴 < +∞))
1714, 16mpbird 166 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → 𝐴 < 𝐵)
18 simplr 525 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ)
19 simpll3 1033 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → 𝐶 ∈ ℝ)
20 rexadd 9809 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) = (𝐴 + 𝐶))
21 readdcl 7900 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
2220, 21eqeltrd 2247 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐶) ∈ ℝ)
2318, 19, 22syl2anc 409 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) ∈ ℝ)
24 ltpnf 9737 . . . . . 6 ((𝐴 +𝑒 𝐶) ∈ ℝ → (𝐴 +𝑒 𝐶) < +∞)
2523, 24syl 14 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) < +∞)
26 oveq1 5860 . . . . . . 7 (𝐵 = +∞ → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
2726adantl 275 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
28 rexr 7965 . . . . . . . 8 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
29 renemnf 7968 . . . . . . . 8 (𝐶 ∈ ℝ → 𝐶 ≠ -∞)
30 xaddpnf2 9804 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (+∞ +𝑒 𝐶) = +∞)
3128, 29, 30syl2anc 409 . . . . . . 7 (𝐶 ∈ ℝ → (+∞ +𝑒 𝐶) = +∞)
3219, 31syl 14 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (+∞ +𝑒 𝐶) = +∞)
3327, 32eqtrd 2203 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
3425, 33breqtrrd 4017 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))
3517, 342thd 174 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
36 mnfle 9749 . . . . . . . 8 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
37363ad2ant1 1013 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → -∞ ≤ 𝐴)
3837ad2antrr 485 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → -∞ ≤ 𝐴)
39 mnfxr 7976 . . . . . . 7 -∞ ∈ ℝ*
40 simpll1 1031 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ*)
41 xrlenlt 7984 . . . . . . 7 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞))
4239, 40, 41sylancr 412 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞))
4338, 42mpbid 146 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
44 breq2 3993 . . . . . 6 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
4544adantl 275 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
4643, 45mtbird 668 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
47283ad2ant3 1015 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐶 ∈ ℝ*)
4847ad2antrr 485 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → 𝐶 ∈ ℝ*)
49 xaddcl 9817 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
5040, 48, 49syl2anc 409 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) ∈ ℝ*)
51 mnfle 9749 . . . . . . 7 ((𝐴 +𝑒 𝐶) ∈ ℝ* → -∞ ≤ (𝐴 +𝑒 𝐶))
5250, 51syl 14 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → -∞ ≤ (𝐴 +𝑒 𝐶))
53 xrlenlt 7984 . . . . . . 7 ((-∞ ∈ ℝ* ∧ (𝐴 +𝑒 𝐶) ∈ ℝ*) → (-∞ ≤ (𝐴 +𝑒 𝐶) ↔ ¬ (𝐴 +𝑒 𝐶) < -∞))
5439, 50, 53sylancr 412 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (-∞ ≤ (𝐴 +𝑒 𝐶) ↔ ¬ (𝐴 +𝑒 𝐶) < -∞))
5552, 54mpbid 146 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → ¬ (𝐴 +𝑒 𝐶) < -∞)
56 simpr 109 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → 𝐵 = -∞)
5756oveq1d 5868 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐶) = (-∞ +𝑒 𝐶))
58 renepnf 7967 . . . . . . . . . 10 (𝐶 ∈ ℝ → 𝐶 ≠ +∞)
59583ad2ant3 1015 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐶 ≠ +∞)
6059ad2antrr 485 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → 𝐶 ≠ +∞)
61 xaddmnf2 9806 . . . . . . . 8 ((𝐶 ∈ ℝ*𝐶 ≠ +∞) → (-∞ +𝑒 𝐶) = -∞)
6248, 60, 61syl2anc 409 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (-∞ +𝑒 𝐶) = -∞)
6357, 62eqtrd 2203 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐶) = -∞)
6463breq2d 4001 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → ((𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶) ↔ (𝐴 +𝑒 𝐶) < -∞))
6555, 64mtbird 668 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → ¬ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))
6646, 652falsed 697 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
67 elxr 9733 . . . . . 6 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
6867biimpi 119 . . . . 5 (𝐵 ∈ ℝ* → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
69683ad2ant2 1014 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
7069adantr 274 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
7112, 35, 66, 70mpjao3dan 1302 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
72 simpl2 996 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
73 pnfge 9746 . . . . . 6 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
7472, 73syl 14 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐵 ≤ +∞)
75 pnfxr 7972 . . . . . . 7 +∞ ∈ ℝ*
7675a1i 9 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → +∞ ∈ ℝ*)
77 xrlenlt 7984 . . . . . 6 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ≤ +∞ ↔ ¬ +∞ < 𝐵))
7872, 76, 77syl2anc 409 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐵 ≤ +∞ ↔ ¬ +∞ < 𝐵))
7974, 78mpbid 146 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ +∞ < 𝐵)
80 simpr 109 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 = +∞)
8180breq1d 3999 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
8279, 81mtbird 668 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ 𝐴 < 𝐵)
8347adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐶 ∈ ℝ*)
84 xaddcl 9817 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
8572, 83, 84syl2anc 409 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐶) ∈ ℝ*)
86 pnfge 9746 . . . . . . 7 ((𝐵 +𝑒 𝐶) ∈ ℝ* → (𝐵 +𝑒 𝐶) ≤ +∞)
8785, 86syl 14 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐶) ≤ +∞)
88293ad2ant3 1015 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐶 ≠ -∞)
8988adantr 274 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐶 ≠ -∞)
9083, 89, 30syl2anc 409 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (+∞ +𝑒 𝐶) = +∞)
9187, 90breqtrrd 4017 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐵 +𝑒 𝐶) ≤ (+∞ +𝑒 𝐶))
92 xaddcl 9817 . . . . . . 7 ((+∞ ∈ ℝ*𝐶 ∈ ℝ*) → (+∞ +𝑒 𝐶) ∈ ℝ*)
9375, 83, 92sylancr 412 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (+∞ +𝑒 𝐶) ∈ ℝ*)
94 xrlenlt 7984 . . . . . 6 (((𝐵 +𝑒 𝐶) ∈ ℝ* ∧ (+∞ +𝑒 𝐶) ∈ ℝ*) → ((𝐵 +𝑒 𝐶) ≤ (+∞ +𝑒 𝐶) ↔ ¬ (+∞ +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
9585, 93, 94syl2anc 409 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → ((𝐵 +𝑒 𝐶) ≤ (+∞ +𝑒 𝐶) ↔ ¬ (+∞ +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
9691, 95mpbid 146 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ (+∞ +𝑒 𝐶) < (𝐵 +𝑒 𝐶))
9780oveq1d 5868 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
9897breq1d 3999 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → ((𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶) ↔ (+∞ +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
9996, 98mtbird 668 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → ¬ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))
10082, 992falsed 697 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
101 simplr 525 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → 𝐴 = -∞)
102 mnflt 9740 . . . . . 6 (𝐵 ∈ ℝ → -∞ < 𝐵)
103102adantl 275 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → -∞ < 𝐵)
104101, 103eqbrtrd 4011 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → 𝐴 < 𝐵)
105101oveq1d 5868 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐶) = (-∞ +𝑒 𝐶))
106 simpll3 1033 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ)
107106, 28syl 14 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ*)
108106, 58syl 14 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → 𝐶 ≠ +∞)
109107, 108, 61syl2anc 409 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → (-∞ +𝑒 𝐶) = -∞)
110105, 109eqtrd 2203 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐶) = -∞)
111 simpr 109 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
112 rexadd 9809 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
113 readdcl 7900 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
114112, 113eqeltrd 2247 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) ∈ ℝ)
115111, 106, 114syl2anc 409 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 𝐶) ∈ ℝ)
116 mnflt 9740 . . . . . 6 ((𝐵 +𝑒 𝐶) ∈ ℝ → -∞ < (𝐵 +𝑒 𝐶))
117115, 116syl 14 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → -∞ < (𝐵 +𝑒 𝐶))
118110, 117eqbrtrd 4011 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶))
119104, 1182thd 174 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
120 simplr 525 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → 𝐴 = -∞)
121 simpr 109 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → 𝐵 = +∞)
122120, 121breq12d 4002 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ -∞ < +∞))
123 oveq1 5860 . . . . . . 7 (𝐴 = -∞ → (𝐴 +𝑒 𝐶) = (-∞ +𝑒 𝐶))
12447, 59, 61syl2anc 409 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (-∞ +𝑒 𝐶) = -∞)
125123, 124sylan9eqr 2225 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 +𝑒 𝐶) = -∞)
126125adantr 274 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐶) = -∞)
12726adantl 275 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
12847, 88, 30syl2anc 409 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (+∞ +𝑒 𝐶) = +∞)
129128ad2antrr 485 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → (+∞ +𝑒 𝐶) = +∞)
130127, 129eqtrd 2203 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
131126, 130breq12d 4002 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶) ↔ -∞ < +∞))
132122, 131bitr4d 190 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = +∞) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
133 simplr 525 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → 𝐴 = -∞)
134 simpr 109 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → 𝐵 = -∞)
135133, 134breq12d 4002 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ -∞ < -∞))
136124ad2antrr 485 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → (-∞ +𝑒 𝐶) = -∞)
137123eqeq1d 2179 . . . . . . 7 (𝐴 = -∞ → ((𝐴 +𝑒 𝐶) = -∞ ↔ (-∞ +𝑒 𝐶) = -∞))
138137ad2antlr 486 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → ((𝐴 +𝑒 𝐶) = -∞ ↔ (-∞ +𝑒 𝐶) = -∞))
139136, 138mpbird 166 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → (𝐴 +𝑒 𝐶) = -∞)
140134oveq1d 5868 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐶) = (-∞ +𝑒 𝐶))
141140, 136eqtrd 2203 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐶) = -∞)
142139, 141breq12d 4002 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → ((𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶) ↔ -∞ < -∞))
143135, 142bitr4d 190 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
14469adantr 274 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
145119, 132, 143, 144mpjao3dan 1302 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
146 elxr 9733 . . . 4 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
147146biimpi 119 . . 3 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
1481473ad2ant1 1013 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
14971, 100, 145, 148mpjao3dan 1302 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 +𝑒 𝐶) < (𝐵 +𝑒 𝐶)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 972  w3a 973   = wceq 1348  wcel 2141  wne 2340   class class class wbr 3989  (class class class)co 5853  cr 7773   + caddc 7777  +∞cpnf 7951  -∞cmnf 7952  *cxr 7953   < clt 7954  cle 7955   +𝑒 cxad 9727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-xadd 9730
This theorem is referenced by:  xltadd2  9834  xlt2add  9837  xrmaxaddlem  11223
  Copyright terms: Public domain W3C validator