ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemres GIF version

Theorem tfr1onlemres 6197
Description: Lemma for tfr1on 6198. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlemres.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlemres.yx (𝜑𝑌𝑋)
Assertion
Ref Expression
tfr1onlemres (𝜑𝑌 ⊆ dom 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦,𝑓)   𝐹(𝑥,𝑦,𝑓)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem tfr1onlemres
Dummy variables 𝑔 𝑧 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfr1on.x . . . . . . . . . 10 (𝜑 → Ord 𝑋)
21adantr 272 . . . . . . . . 9 ((𝜑𝑧𝑌) → Ord 𝑋)
3 simpr 109 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑧𝑌)
4 tfr1onlemres.yx . . . . . . . . . . 11 (𝜑𝑌𝑋)
54adantr 272 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑌𝑋)
63, 5jca 302 . . . . . . . . 9 ((𝜑𝑧𝑌) → (𝑧𝑌𝑌𝑋))
7 ordtr1 4268 . . . . . . . . 9 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
82, 6, 7sylc 62 . . . . . . . 8 ((𝜑𝑧𝑌) → 𝑧𝑋)
9 tfr1on.f . . . . . . . . 9 𝐹 = recs(𝐺)
10 tfr1on.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
11 tfr1on.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
12 tfr1onlemsucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
13 tfr1onlemres.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
149, 10, 1, 11, 12, 13tfr1onlemaccex 6196 . . . . . . . 8 ((𝜑𝑧𝑋) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
158, 14syldan 278 . . . . . . 7 ((𝜑𝑧𝑌) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
1610ad2antrr 477 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Fun 𝐺)
171ad2antrr 477 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Ord 𝑋)
18113adant1r 1190 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
19183adant1r 1190 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
204ad2antrr 477 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑌𝑋)
213adantr 272 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧𝑌)
2213adantlr 466 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
2322adantlr 466 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
24 simprl 503 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔 Fn 𝑧)
25 fneq2 5168 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑔 Fn 𝑤𝑔 Fn 𝑧))
26 raleq 2598 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
2725, 26anbi12d 462 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ((𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
2827rspcev 2758 . . . . . . . . . . 11 ((𝑧𝑋 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑤𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
298, 28sylan 279 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑤𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
30 vex 2658 . . . . . . . . . . 11 𝑔 ∈ V
3112tfr1onlem3ag 6185 . . . . . . . . . . 11 (𝑔 ∈ V → (𝑔𝐴 ↔ ∃𝑤𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
3230, 31ax-mp 7 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑤𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3329, 32sylibr 133 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔𝐴)
349, 16, 17, 19, 12, 20, 21, 23, 24, 33tfr1onlemsucaccv 6189 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
35 vex 2658 . . . . . . . . . . 11 𝑧 ∈ V
36 fneq2 5168 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑔 Fn 𝑥𝑔 Fn 𝑧))
3736imbi1d 230 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V)))
38113expia 1164 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
3938alrimiv 1826 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
40 fneq1 5167 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → (𝑓 Fn 𝑥𝑔 Fn 𝑥))
41 fveq2 5373 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
4241eleq1d 2181 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ V ↔ (𝐺𝑔) ∈ V))
4340, 42imbi12d 233 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V)))
4443spv 1812 . . . . . . . . . . . . . . . . 17 (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) → (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V))
4539, 44syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V))
4645ralrimiva 2477 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋 (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V))
4746adantr 272 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑌) → ∀𝑥𝑋 (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V))
4837, 47, 8rspcdva 2763 . . . . . . . . . . . . 13 ((𝜑𝑧𝑌) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
4948imp 123 . . . . . . . . . . . 12 (((𝜑𝑧𝑌) ∧ 𝑔 Fn 𝑧) → (𝐺𝑔) ∈ V)
5024, 49syldan 278 . . . . . . . . . . 11 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝐺𝑔) ∈ V)
51 opexg 4108 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ V) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
5235, 50, 51sylancr 408 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
53 snidg 3518 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
54 elun2 3208 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
5552, 53, 543syl 17 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
56 opeldmg 4702 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ V) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
5735, 50, 56sylancr 408 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
5855, 57mpd 13 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
59 dmeq 4697 . . . . . . . . . 10 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → dom = dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
6059eleq2d 2182 . . . . . . . . 9 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑧 ∈ dom 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
6160rspcev 2758 . . . . . . . 8 (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝐴 𝑧 ∈ dom )
6234, 58, 61syl2anc 406 . . . . . . 7 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝐴 𝑧 ∈ dom )
6315, 62exlimddv 1850 . . . . . 6 ((𝜑𝑧𝑌) → ∃𝐴 𝑧 ∈ dom )
64 eliun 3781 . . . . . 6 (𝑧 𝐴 dom ↔ ∃𝐴 𝑧 ∈ dom )
6563, 64sylibr 133 . . . . 5 ((𝜑𝑧𝑌) → 𝑧 𝐴 dom )
6665ex 114 . . . 4 (𝜑 → (𝑧𝑌𝑧 𝐴 dom ))
6766ssrdv 3067 . . 3 (𝜑𝑌 𝐴 dom )
68 dmuni 4707 . . . 4 dom 𝐴 = 𝐴 dom
6912, 1tfr1onlemssrecs 6187 . . . . 5 (𝜑 𝐴 ⊆ recs(𝐺))
70 dmss 4696 . . . . 5 ( 𝐴 ⊆ recs(𝐺) → dom 𝐴 ⊆ dom recs(𝐺))
7169, 70syl 14 . . . 4 (𝜑 → dom 𝐴 ⊆ dom recs(𝐺))
7268, 71syl5eqssr 3108 . . 3 (𝜑 𝐴 dom ⊆ dom recs(𝐺))
7367, 72sstrd 3071 . 2 (𝜑𝑌 ⊆ dom recs(𝐺))
749dmeqi 4698 . 2 dom 𝐹 = dom recs(𝐺)
7573, 74syl6sseqr 3110 1 (𝜑𝑌 ⊆ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 943  wal 1310   = wceq 1312  wex 1449  wcel 1461  {cab 2099  wral 2388  wrex 2389  Vcvv 2655  cun 3033  wss 3035  {csn 3491  cop 3494   cuni 3700   ciun 3777  Ord word 4242  suc csuc 4245  dom cdm 4497  cres 4499  Fun wfun 5073   Fn wfn 5074  cfv 5079  recscrecs 6152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-iord 4246  df-on 4248  df-suc 4251  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-recs 6153
This theorem is referenced by:  tfr1on  6198
  Copyright terms: Public domain W3C validator