| Step | Hyp | Ref
 | Expression | 
| 1 |   | tfr1on.x | 
. . . . . . . . . 10
⊢ (𝜑 → Ord 𝑋) | 
| 2 | 1 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → Ord 𝑋) | 
| 3 |   | simpr 110 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ 𝑌) | 
| 4 |   | tfr1onlemres.yx | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ 𝑋) | 
| 5 | 4 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑌 ∈ 𝑋) | 
| 6 | 3, 5 | jca 306 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → (𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋)) | 
| 7 |   | ordtr1 4423 | 
. . . . . . . . 9
⊢ (Ord
𝑋 → ((𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋) → 𝑧 ∈ 𝑋)) | 
| 8 | 2, 6, 7 | sylc 62 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ 𝑋) | 
| 9 |   | tfr1on.f | 
. . . . . . . . 9
⊢ 𝐹 = recs(𝐺) | 
| 10 |   | tfr1on.g | 
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐺) | 
| 11 |   | tfr1on.ex | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) | 
| 12 |   | tfr1onlemsucfn.1 | 
. . . . . . . . 9
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | 
| 13 |   | tfr1onlemres.u | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | 
| 14 | 9, 10, 1, 11, 12, 13 | tfr1onlemaccex 6406 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | 
| 15 | 8, 14 | syldan 282 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | 
| 16 | 10 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → Fun 𝐺) | 
| 17 | 1 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → Ord 𝑋) | 
| 18 | 11 | 3adant1r 1233 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) | 
| 19 | 18 | 3adant1r 1233 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) | 
| 20 | 4 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑌 ∈ 𝑋) | 
| 21 | 3 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑧 ∈ 𝑌) | 
| 22 | 13 | adantlr 477 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | 
| 23 | 22 | adantlr 477 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | 
| 24 |   | simprl 529 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑔 Fn 𝑧) | 
| 25 |   | fneq2 5347 | 
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (𝑔 Fn 𝑤 ↔ 𝑔 Fn 𝑧)) | 
| 26 |   | raleq 2693 | 
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | 
| 27 | 25, 26 | anbi12d 473 | 
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → ((𝑔 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) | 
| 28 | 27 | rspcev 2868 | 
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑋 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → ∃𝑤 ∈ 𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | 
| 29 | 8, 28 | sylan 283 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → ∃𝑤 ∈ 𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | 
| 30 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑔 ∈ V | 
| 31 | 12 | tfr1onlem3ag 6395 | 
. . . . . . . . . . 11
⊢ (𝑔 ∈ V → (𝑔 ∈ 𝐴 ↔ ∃𝑤 ∈ 𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) | 
| 32 | 30, 31 | ax-mp 5 | 
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑤 ∈ 𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | 
| 33 | 29, 32 | sylibr 134 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑔 ∈ 𝐴) | 
| 34 | 9, 16, 17, 19, 12, 20, 21, 23, 24, 33 | tfr1onlemsucaccv 6399 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴) | 
| 35 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑧 ∈ V | 
| 36 |   | fneq2 5347 | 
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝑔 Fn 𝑥 ↔ 𝑔 Fn 𝑧)) | 
| 37 | 36 | imbi1d 231 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑔 Fn 𝑥 → (𝐺‘𝑔) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V))) | 
| 38 | 11 | 3expia 1207 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) | 
| 39 | 38 | alrimiv 1888 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) | 
| 40 |   | fneq1 5346 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑥 ↔ 𝑔 Fn 𝑥)) | 
| 41 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) | 
| 42 | 41 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ V ↔ (𝐺‘𝑔) ∈ V)) | 
| 43 | 40, 42 | imbi12d 234 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ (𝑔 Fn 𝑥 → (𝐺‘𝑔) ∈ V))) | 
| 44 | 43 | spv 1874 | 
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) → (𝑔 Fn 𝑥 → (𝐺‘𝑔) ∈ V)) | 
| 45 | 39, 44 | syl 14 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑔 Fn 𝑥 → (𝐺‘𝑔) ∈ V)) | 
| 46 | 45 | ralrimiva 2570 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝑔 Fn 𝑥 → (𝐺‘𝑔) ∈ V)) | 
| 47 | 46 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → ∀𝑥 ∈ 𝑋 (𝑔 Fn 𝑥 → (𝐺‘𝑔) ∈ V)) | 
| 48 | 37, 47, 8 | rspcdva 2873 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V)) | 
| 49 | 48 | imp 124 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ 𝑔 Fn 𝑧) → (𝐺‘𝑔) ∈ V) | 
| 50 | 24, 49 | syldan 282 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → (𝐺‘𝑔) ∈ V) | 
| 51 |   | opexg 4261 | 
. . . . . . . . . . 11
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ V) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) | 
| 52 | 35, 50, 51 | sylancr 414 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) | 
| 53 |   | snidg 3651 | 
. . . . . . . . . 10
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ V → 〈𝑧, (𝐺‘𝑔)〉 ∈ {〈𝑧, (𝐺‘𝑔)〉}) | 
| 54 |   | elun2 3331 | 
. . . . . . . . . 10
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ {〈𝑧, (𝐺‘𝑔)〉} → 〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) | 
| 55 | 52, 53, 54 | 3syl 17 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) | 
| 56 |   | opeldmg 4871 | 
. . . . . . . . . 10
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ V) → (〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) | 
| 57 | 35, 50, 56 | sylancr 414 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → (〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) | 
| 58 | 55, 57 | mpd 13 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) | 
| 59 |   | dmeq 4866 | 
. . . . . . . . . 10
⊢ (ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → dom ℎ = dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) | 
| 60 | 59 | eleq2d 2266 | 
. . . . . . . . 9
⊢ (ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (𝑧 ∈ dom ℎ ↔ 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) | 
| 61 | 60 | rspcev 2868 | 
. . . . . . . 8
⊢ (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴 ∧ 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) | 
| 62 | 34, 58, 61 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) | 
| 63 | 15, 62 | exlimddv 1913 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) | 
| 64 |   | eliun 3920 | 
. . . . . 6
⊢ (𝑧 ∈ ∪ ℎ
∈ 𝐴 dom ℎ ↔ ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) | 
| 65 | 63, 64 | sylibr 134 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ ∪
ℎ ∈ 𝐴 dom ℎ) | 
| 66 | 65 | ex 115 | 
. . . 4
⊢ (𝜑 → (𝑧 ∈ 𝑌 → 𝑧 ∈ ∪
ℎ ∈ 𝐴 dom ℎ)) | 
| 67 | 66 | ssrdv 3189 | 
. . 3
⊢ (𝜑 → 𝑌 ⊆ ∪
ℎ ∈ 𝐴 dom ℎ) | 
| 68 |   | dmuni 4876 | 
. . . 4
⊢ dom ∪ 𝐴 =
∪ ℎ ∈ 𝐴 dom ℎ | 
| 69 | 12, 1 | tfr1onlemssrecs 6397 | 
. . . . 5
⊢ (𝜑 → ∪ 𝐴
⊆ recs(𝐺)) | 
| 70 |   | dmss 4865 | 
. . . . 5
⊢ (∪ 𝐴
⊆ recs(𝐺) → dom
∪ 𝐴 ⊆ dom recs(𝐺)) | 
| 71 | 69, 70 | syl 14 | 
. . . 4
⊢ (𝜑 → dom ∪ 𝐴
⊆ dom recs(𝐺)) | 
| 72 | 68, 71 | eqsstrrid 3230 | 
. . 3
⊢ (𝜑 → ∪ ℎ
∈ 𝐴 dom ℎ ⊆ dom recs(𝐺)) | 
| 73 | 67, 72 | sstrd 3193 | 
. 2
⊢ (𝜑 → 𝑌 ⊆ dom recs(𝐺)) | 
| 74 | 9 | dmeqi 4867 | 
. 2
⊢ dom 𝐹 = dom recs(𝐺) | 
| 75 | 73, 74 | sseqtrrdi 3232 | 
1
⊢ (𝜑 → 𝑌 ⊆ dom 𝐹) |