ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemres GIF version

Theorem tfr1onlemres 6435
Description: Lemma for tfr1on 6436. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlemres.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlemres.yx (𝜑𝑌𝑋)
Assertion
Ref Expression
tfr1onlemres (𝜑𝑌 ⊆ dom 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦,𝑓)   𝐹(𝑥,𝑦,𝑓)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem tfr1onlemres
Dummy variables 𝑔 𝑧 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfr1on.x . . . . . . . . . 10 (𝜑 → Ord 𝑋)
21adantr 276 . . . . . . . . 9 ((𝜑𝑧𝑌) → Ord 𝑋)
3 simpr 110 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑧𝑌)
4 tfr1onlemres.yx . . . . . . . . . . 11 (𝜑𝑌𝑋)
54adantr 276 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑌𝑋)
63, 5jca 306 . . . . . . . . 9 ((𝜑𝑧𝑌) → (𝑧𝑌𝑌𝑋))
7 ordtr1 4435 . . . . . . . . 9 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
82, 6, 7sylc 62 . . . . . . . 8 ((𝜑𝑧𝑌) → 𝑧𝑋)
9 tfr1on.f . . . . . . . . 9 𝐹 = recs(𝐺)
10 tfr1on.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
11 tfr1on.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
12 tfr1onlemsucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
13 tfr1onlemres.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
149, 10, 1, 11, 12, 13tfr1onlemaccex 6434 . . . . . . . 8 ((𝜑𝑧𝑋) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
158, 14syldan 282 . . . . . . 7 ((𝜑𝑧𝑌) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
1610ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Fun 𝐺)
171ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Ord 𝑋)
18113adant1r 1234 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
19183adant1r 1234 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
204ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑌𝑋)
213adantr 276 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧𝑌)
2213adantlr 477 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
2322adantlr 477 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
24 simprl 529 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔 Fn 𝑧)
25 fneq2 5363 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑔 Fn 𝑤𝑔 Fn 𝑧))
26 raleq 2702 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
2725, 26anbi12d 473 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ((𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
2827rspcev 2877 . . . . . . . . . . 11 ((𝑧𝑋 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑤𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
298, 28sylan 283 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑤𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
30 vex 2775 . . . . . . . . . . 11 𝑔 ∈ V
3112tfr1onlem3ag 6423 . . . . . . . . . . 11 (𝑔 ∈ V → (𝑔𝐴 ↔ ∃𝑤𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
3230, 31ax-mp 5 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑤𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3329, 32sylibr 134 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔𝐴)
349, 16, 17, 19, 12, 20, 21, 23, 24, 33tfr1onlemsucaccv 6427 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
35 vex 2775 . . . . . . . . . . 11 𝑧 ∈ V
36 fneq2 5363 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑔 Fn 𝑥𝑔 Fn 𝑧))
3736imbi1d 231 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V)))
38113expia 1208 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
3938alrimiv 1897 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
40 fneq1 5362 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → (𝑓 Fn 𝑥𝑔 Fn 𝑥))
41 fveq2 5576 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
4241eleq1d 2274 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ V ↔ (𝐺𝑔) ∈ V))
4340, 42imbi12d 234 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V)))
4443spv 1883 . . . . . . . . . . . . . . . . 17 (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) → (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V))
4539, 44syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V))
4645ralrimiva 2579 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋 (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V))
4746adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑌) → ∀𝑥𝑋 (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V))
4837, 47, 8rspcdva 2882 . . . . . . . . . . . . 13 ((𝜑𝑧𝑌) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
4948imp 124 . . . . . . . . . . . 12 (((𝜑𝑧𝑌) ∧ 𝑔 Fn 𝑧) → (𝐺𝑔) ∈ V)
5024, 49syldan 282 . . . . . . . . . . 11 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝐺𝑔) ∈ V)
51 opexg 4272 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ V) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
5235, 50, 51sylancr 414 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
53 snidg 3662 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
54 elun2 3341 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
5552, 53, 543syl 17 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
56 opeldmg 4883 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ V) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
5735, 50, 56sylancr 414 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
5855, 57mpd 13 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
59 dmeq 4878 . . . . . . . . . 10 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → dom = dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
6059eleq2d 2275 . . . . . . . . 9 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑧 ∈ dom 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
6160rspcev 2877 . . . . . . . 8 (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝐴 𝑧 ∈ dom )
6234, 58, 61syl2anc 411 . . . . . . 7 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝐴 𝑧 ∈ dom )
6315, 62exlimddv 1922 . . . . . 6 ((𝜑𝑧𝑌) → ∃𝐴 𝑧 ∈ dom )
64 eliun 3931 . . . . . 6 (𝑧 𝐴 dom ↔ ∃𝐴 𝑧 ∈ dom )
6563, 64sylibr 134 . . . . 5 ((𝜑𝑧𝑌) → 𝑧 𝐴 dom )
6665ex 115 . . . 4 (𝜑 → (𝑧𝑌𝑧 𝐴 dom ))
6766ssrdv 3199 . . 3 (𝜑𝑌 𝐴 dom )
68 dmuni 4888 . . . 4 dom 𝐴 = 𝐴 dom
6912, 1tfr1onlemssrecs 6425 . . . . 5 (𝜑 𝐴 ⊆ recs(𝐺))
70 dmss 4877 . . . . 5 ( 𝐴 ⊆ recs(𝐺) → dom 𝐴 ⊆ dom recs(𝐺))
7169, 70syl 14 . . . 4 (𝜑 → dom 𝐴 ⊆ dom recs(𝐺))
7268, 71eqsstrrid 3240 . . 3 (𝜑 𝐴 dom ⊆ dom recs(𝐺))
7367, 72sstrd 3203 . 2 (𝜑𝑌 ⊆ dom recs(𝐺))
749dmeqi 4879 . 2 dom 𝐹 = dom recs(𝐺)
7573, 74sseqtrrdi 3242 1 (𝜑𝑌 ⊆ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wal 1371   = wceq 1373  wex 1515  wcel 2176  {cab 2191  wral 2484  wrex 2485  Vcvv 2772  cun 3164  wss 3166  {csn 3633  cop 3636   cuni 3850   ciun 3927  Ord word 4409  suc csuc 4412  dom cdm 4675  cres 4677  Fun wfun 5265   Fn wfn 5266  cfv 5271  recscrecs 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6391
This theorem is referenced by:  tfr1on  6436
  Copyright terms: Public domain W3C validator