Step | Hyp | Ref
| Expression |
1 | | tfr1on.x |
. . . . . . . . . 10
⊢ (𝜑 → Ord 𝑋) |
2 | 1 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → Ord 𝑋) |
3 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ 𝑌) |
4 | | tfr1onlemres.yx |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ 𝑋) |
5 | 4 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑌 ∈ 𝑋) |
6 | 3, 5 | jca 304 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → (𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋)) |
7 | | ordtr1 4366 |
. . . . . . . . 9
⊢ (Ord
𝑋 → ((𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋) → 𝑧 ∈ 𝑋)) |
8 | 2, 6, 7 | sylc 62 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ 𝑋) |
9 | | tfr1on.f |
. . . . . . . . 9
⊢ 𝐹 = recs(𝐺) |
10 | | tfr1on.g |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐺) |
11 | | tfr1on.ex |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
12 | | tfr1onlemsucfn.1 |
. . . . . . . . 9
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
13 | | tfr1onlemres.u |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
14 | 9, 10, 1, 11, 12, 13 | tfr1onlemaccex 6316 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
15 | 8, 14 | syldan 280 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
16 | 10 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → Fun 𝐺) |
17 | 1 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → Ord 𝑋) |
18 | 11 | 3adant1r 1221 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
19 | 18 | 3adant1r 1221 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
20 | 4 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑌 ∈ 𝑋) |
21 | 3 | adantr 274 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑧 ∈ 𝑌) |
22 | 13 | adantlr 469 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
23 | 22 | adantlr 469 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
24 | | simprl 521 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑔 Fn 𝑧) |
25 | | fneq2 5277 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (𝑔 Fn 𝑤 ↔ 𝑔 Fn 𝑧)) |
26 | | raleq 2661 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
27 | 25, 26 | anbi12d 465 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → ((𝑔 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) |
28 | 27 | rspcev 2830 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑋 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → ∃𝑤 ∈ 𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
29 | 8, 28 | sylan 281 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → ∃𝑤 ∈ 𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
30 | | vex 2729 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
31 | 12 | tfr1onlem3ag 6305 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ V → (𝑔 ∈ 𝐴 ↔ ∃𝑤 ∈ 𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) |
32 | 30, 31 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑤 ∈ 𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
33 | 29, 32 | sylibr 133 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑔 ∈ 𝐴) |
34 | 9, 16, 17, 19, 12, 20, 21, 23, 24, 33 | tfr1onlemsucaccv 6309 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴) |
35 | | vex 2729 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
36 | | fneq2 5277 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝑔 Fn 𝑥 ↔ 𝑔 Fn 𝑧)) |
37 | 36 | imbi1d 230 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑔 Fn 𝑥 → (𝐺‘𝑔) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V))) |
38 | 11 | 3expia 1195 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
39 | 38 | alrimiv 1862 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V)) |
40 | | fneq1 5276 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝑥 ↔ 𝑔 Fn 𝑥)) |
41 | | fveq2 5486 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) |
42 | 41 | eleq1d 2235 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ V ↔ (𝐺‘𝑔) ∈ V)) |
43 | 40, 42 | imbi12d 233 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → ((𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) ↔ (𝑔 Fn 𝑥 → (𝐺‘𝑔) ∈ V))) |
44 | 43 | spv 1848 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑓(𝑓 Fn 𝑥 → (𝐺‘𝑓) ∈ V) → (𝑔 Fn 𝑥 → (𝐺‘𝑔) ∈ V)) |
45 | 39, 44 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑔 Fn 𝑥 → (𝐺‘𝑔) ∈ V)) |
46 | 45 | ralrimiva 2539 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝑔 Fn 𝑥 → (𝐺‘𝑔) ∈ V)) |
47 | 46 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → ∀𝑥 ∈ 𝑋 (𝑔 Fn 𝑥 → (𝐺‘𝑔) ∈ V)) |
48 | 37, 47, 8 | rspcdva 2835 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → (𝑔 Fn 𝑧 → (𝐺‘𝑔) ∈ V)) |
49 | 48 | imp 123 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ 𝑔 Fn 𝑧) → (𝐺‘𝑔) ∈ V) |
50 | 24, 49 | syldan 280 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → (𝐺‘𝑔) ∈ V) |
51 | | opexg 4206 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ V) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) |
52 | 35, 50, 51 | sylancr 411 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) |
53 | | snidg 3605 |
. . . . . . . . . 10
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ V → 〈𝑧, (𝐺‘𝑔)〉 ∈ {〈𝑧, (𝐺‘𝑔)〉}) |
54 | | elun2 3290 |
. . . . . . . . . 10
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ {〈𝑧, (𝐺‘𝑔)〉} → 〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
55 | 52, 53, 54 | 3syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
56 | | opeldmg 4809 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ V) → (〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) |
57 | 35, 50, 56 | sylancr 411 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → (〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) |
58 | 55, 57 | mpd 13 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
59 | | dmeq 4804 |
. . . . . . . . . 10
⊢ (ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → dom ℎ = dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
60 | 59 | eleq2d 2236 |
. . . . . . . . 9
⊢ (ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (𝑧 ∈ dom ℎ ↔ 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) |
61 | 60 | rspcev 2830 |
. . . . . . . 8
⊢ (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴 ∧ 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) |
62 | 34, 58, 61 | syl2anc 409 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) |
63 | 15, 62 | exlimddv 1886 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) |
64 | | eliun 3870 |
. . . . . 6
⊢ (𝑧 ∈ ∪ ℎ
∈ 𝐴 dom ℎ ↔ ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) |
65 | 63, 64 | sylibr 133 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ ∪
ℎ ∈ 𝐴 dom ℎ) |
66 | 65 | ex 114 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ 𝑌 → 𝑧 ∈ ∪
ℎ ∈ 𝐴 dom ℎ)) |
67 | 66 | ssrdv 3148 |
. . 3
⊢ (𝜑 → 𝑌 ⊆ ∪
ℎ ∈ 𝐴 dom ℎ) |
68 | | dmuni 4814 |
. . . 4
⊢ dom ∪ 𝐴 =
∪ ℎ ∈ 𝐴 dom ℎ |
69 | 12, 1 | tfr1onlemssrecs 6307 |
. . . . 5
⊢ (𝜑 → ∪ 𝐴
⊆ recs(𝐺)) |
70 | | dmss 4803 |
. . . . 5
⊢ (∪ 𝐴
⊆ recs(𝐺) → dom
∪ 𝐴 ⊆ dom recs(𝐺)) |
71 | 69, 70 | syl 14 |
. . . 4
⊢ (𝜑 → dom ∪ 𝐴
⊆ dom recs(𝐺)) |
72 | 68, 71 | eqsstrrid 3189 |
. . 3
⊢ (𝜑 → ∪ ℎ
∈ 𝐴 dom ℎ ⊆ dom recs(𝐺)) |
73 | 67, 72 | sstrd 3152 |
. 2
⊢ (𝜑 → 𝑌 ⊆ dom recs(𝐺)) |
74 | 9 | dmeqi 4805 |
. 2
⊢ dom 𝐹 = dom recs(𝐺) |
75 | 73, 74 | sseqtrrdi 3191 |
1
⊢ (𝜑 → 𝑌 ⊆ dom 𝐹) |