ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlemres GIF version

Theorem tfr1onlemres 6407
Description: Lemma for tfr1on 6408. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlemres.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlemres.yx (𝜑𝑌𝑋)
Assertion
Ref Expression
tfr1onlemres (𝜑𝑌 ⊆ dom 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦,𝑓)   𝐹(𝑥,𝑦,𝑓)   𝑋(𝑦)   𝑌(𝑦)

Proof of Theorem tfr1onlemres
Dummy variables 𝑔 𝑧 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfr1on.x . . . . . . . . . 10 (𝜑 → Ord 𝑋)
21adantr 276 . . . . . . . . 9 ((𝜑𝑧𝑌) → Ord 𝑋)
3 simpr 110 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑧𝑌)
4 tfr1onlemres.yx . . . . . . . . . . 11 (𝜑𝑌𝑋)
54adantr 276 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑌𝑋)
63, 5jca 306 . . . . . . . . 9 ((𝜑𝑧𝑌) → (𝑧𝑌𝑌𝑋))
7 ordtr1 4423 . . . . . . . . 9 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
82, 6, 7sylc 62 . . . . . . . 8 ((𝜑𝑧𝑌) → 𝑧𝑋)
9 tfr1on.f . . . . . . . . 9 𝐹 = recs(𝐺)
10 tfr1on.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
11 tfr1on.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
12 tfr1onlemsucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
13 tfr1onlemres.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
149, 10, 1, 11, 12, 13tfr1onlemaccex 6406 . . . . . . . 8 ((𝜑𝑧𝑋) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
158, 14syldan 282 . . . . . . 7 ((𝜑𝑧𝑌) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
1610ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Fun 𝐺)
171ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Ord 𝑋)
18113adant1r 1233 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
19183adant1r 1233 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
204ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑌𝑋)
213adantr 276 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧𝑌)
2213adantlr 477 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
2322adantlr 477 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
24 simprl 529 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔 Fn 𝑧)
25 fneq2 5347 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑔 Fn 𝑤𝑔 Fn 𝑧))
26 raleq 2693 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
2725, 26anbi12d 473 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ((𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
2827rspcev 2868 . . . . . . . . . . 11 ((𝑧𝑋 ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑤𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
298, 28sylan 283 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑤𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
30 vex 2766 . . . . . . . . . . 11 𝑔 ∈ V
3112tfr1onlem3ag 6395 . . . . . . . . . . 11 (𝑔 ∈ V → (𝑔𝐴 ↔ ∃𝑤𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
3230, 31ax-mp 5 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑤𝑋 (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3329, 32sylibr 134 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔𝐴)
349, 16, 17, 19, 12, 20, 21, 23, 24, 33tfr1onlemsucaccv 6399 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
35 vex 2766 . . . . . . . . . . 11 𝑧 ∈ V
36 fneq2 5347 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (𝑔 Fn 𝑥𝑔 Fn 𝑧))
3736imbi1d 231 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V) ↔ (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V)))
38113expia 1207 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → (𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
3938alrimiv 1888 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V))
40 fneq1 5346 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → (𝑓 Fn 𝑥𝑔 Fn 𝑥))
41 fveq2 5558 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
4241eleq1d 2265 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ V ↔ (𝐺𝑔) ∈ V))
4340, 42imbi12d 234 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → ((𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) ↔ (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V)))
4443spv 1874 . . . . . . . . . . . . . . . . 17 (∀𝑓(𝑓 Fn 𝑥 → (𝐺𝑓) ∈ V) → (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V))
4539, 44syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V))
4645ralrimiva 2570 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋 (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V))
4746adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑌) → ∀𝑥𝑋 (𝑔 Fn 𝑥 → (𝐺𝑔) ∈ V))
4837, 47, 8rspcdva 2873 . . . . . . . . . . . . 13 ((𝜑𝑧𝑌) → (𝑔 Fn 𝑧 → (𝐺𝑔) ∈ V))
4948imp 124 . . . . . . . . . . . 12 (((𝜑𝑧𝑌) ∧ 𝑔 Fn 𝑧) → (𝐺𝑔) ∈ V)
5024, 49syldan 282 . . . . . . . . . . 11 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝐺𝑔) ∈ V)
51 opexg 4261 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ V) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
5235, 50, 51sylancr 414 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
53 snidg 3651 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
54 elun2 3331 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
5552, 53, 543syl 17 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
56 opeldmg 4871 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ V) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
5735, 50, 56sylancr 414 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
5855, 57mpd 13 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
59 dmeq 4866 . . . . . . . . . 10 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → dom = dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
6059eleq2d 2266 . . . . . . . . 9 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑧 ∈ dom 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
6160rspcev 2868 . . . . . . . 8 (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝐴 𝑧 ∈ dom )
6234, 58, 61syl2anc 411 . . . . . . 7 (((𝜑𝑧𝑌) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝐴 𝑧 ∈ dom )
6315, 62exlimddv 1913 . . . . . 6 ((𝜑𝑧𝑌) → ∃𝐴 𝑧 ∈ dom )
64 eliun 3920 . . . . . 6 (𝑧 𝐴 dom ↔ ∃𝐴 𝑧 ∈ dom )
6563, 64sylibr 134 . . . . 5 ((𝜑𝑧𝑌) → 𝑧 𝐴 dom )
6665ex 115 . . . 4 (𝜑 → (𝑧𝑌𝑧 𝐴 dom ))
6766ssrdv 3189 . . 3 (𝜑𝑌 𝐴 dom )
68 dmuni 4876 . . . 4 dom 𝐴 = 𝐴 dom
6912, 1tfr1onlemssrecs 6397 . . . . 5 (𝜑 𝐴 ⊆ recs(𝐺))
70 dmss 4865 . . . . 5 ( 𝐴 ⊆ recs(𝐺) → dom 𝐴 ⊆ dom recs(𝐺))
7169, 70syl 14 . . . 4 (𝜑 → dom 𝐴 ⊆ dom recs(𝐺))
7268, 71eqsstrrid 3230 . . 3 (𝜑 𝐴 dom ⊆ dom recs(𝐺))
7367, 72sstrd 3193 . 2 (𝜑𝑌 ⊆ dom recs(𝐺))
749dmeqi 4867 . 2 dom 𝐹 = dom recs(𝐺)
7573, 74sseqtrrdi 3232 1 (𝜑𝑌 ⊆ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1362   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  cun 3155  wss 3157  {csn 3622  cop 3625   cuni 3839   ciun 3916  Ord word 4397  suc csuc 4400  dom cdm 4663  cres 4665  Fun wfun 5252   Fn wfn 5253  cfv 5258  recscrecs 6362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-recs 6363
This theorem is referenced by:  tfr1on  6408
  Copyright terms: Public domain W3C validator