ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlembacc GIF version

Theorem tfr1onlembacc 6488
Description: Lemma for tfr1on 6496. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfr1onlembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlembacc.4 (𝜑𝐷𝑋)
tfr1onlembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfr1onlembacc (𝜑𝐵𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑧   𝐷,𝑓,𝑔,𝑥   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑧   𝑦,𝑔,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑤)   𝐴(𝑦,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐷(𝑦,𝑧,𝑤,)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐺(𝑧,𝑤,𝑔,)   𝑋(𝑦,𝑧,𝑤,𝑔,)

Proof of Theorem tfr1onlembacc
StepHypRef Expression
1 tfr1onlembacc.3 . 2 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
2 simpr3 1029 . . . . . . 7 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
3 tfr1on.f . . . . . . . 8 𝐹 = recs(𝐺)
4 tfr1on.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
54ad2antrr 488 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → Fun 𝐺)
6 tfr1on.x . . . . . . . . 9 (𝜑 → Ord 𝑋)
76ad2antrr 488 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → Ord 𝑋)
8 tfr1on.ex . . . . . . . . . 10 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
983adant1r 1255 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
1093adant1r 1255 . . . . . . . 8 ((((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) ∧ 𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
11 tfr1onlemsucfn.1 . . . . . . . 8 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
12 tfr1onlembacc.4 . . . . . . . . 9 (𝜑𝐷𝑋)
1312ad2antrr 488 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐷𝑋)
14 simplr 528 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑧𝐷)
15 tfr1onlembacc.u . . . . . . . . . 10 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
1615adantlr 477 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
1716adantlr 477 . . . . . . . 8 ((((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
18 simpr1 1027 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑔 Fn 𝑧)
19 simpr2 1028 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑔𝐴)
203, 5, 7, 10, 11, 13, 14, 17, 18, 19tfr1onlemsucaccv 6487 . . . . . . 7 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
212, 20eqeltrd 2306 . . . . . 6 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐴)
2221ex 115 . . . . 5 ((𝜑𝑧𝐷) → ((𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2322exlimdv 1865 . . . 4 ((𝜑𝑧𝐷) → (∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2423rexlimdva 2648 . . 3 (𝜑 → (∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2524abssdv 3298 . 2 (𝜑 → { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))} ⊆ 𝐴)
261, 25eqsstrid 3270 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wral 2508  wrex 2509  Vcvv 2799  cun 3195  wss 3197  {csn 3666  cop 3669   cuni 3888  Ord word 4453  suc csuc 4456  cres 4721  Fun wfun 5312   Fn wfn 5313  cfv 5318  recscrecs 6450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by:  tfr1onlembfn  6490  tfr1onlemubacc  6492
  Copyright terms: Public domain W3C validator