ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlembacc GIF version

Theorem tfr1onlembacc 6061
Description: Lemma for tfr1on 6069. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfr1onlembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlembacc.4 (𝜑𝐷𝑋)
tfr1onlembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfr1onlembacc (𝜑𝐵𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑧   𝐷,𝑓,𝑔,𝑥   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑧   𝑦,𝑔,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑤)   𝐴(𝑦,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐷(𝑦,𝑧,𝑤,)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐺(𝑧,𝑤,𝑔,)   𝑋(𝑦,𝑧,𝑤,𝑔,)

Proof of Theorem tfr1onlembacc
StepHypRef Expression
1 tfr1onlembacc.3 . 2 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
2 simpr3 949 . . . . . . 7 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
3 tfr1on.f . . . . . . . 8 𝐹 = recs(𝐺)
4 tfr1on.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
54ad2antrr 472 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → Fun 𝐺)
6 tfr1on.x . . . . . . . . 9 (𝜑 → Ord 𝑋)
76ad2antrr 472 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → Ord 𝑋)
8 tfr1on.ex . . . . . . . . . 10 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
983adant1r 1165 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
1093adant1r 1165 . . . . . . . 8 ((((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) ∧ 𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
11 tfr1onlemsucfn.1 . . . . . . . 8 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
12 tfr1onlembacc.4 . . . . . . . . 9 (𝜑𝐷𝑋)
1312ad2antrr 472 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐷𝑋)
14 simplr 497 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑧𝐷)
15 tfr1onlembacc.u . . . . . . . . . 10 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
1615adantlr 461 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
1716adantlr 461 . . . . . . . 8 ((((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
18 simpr1 947 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑔 Fn 𝑧)
19 simpr2 948 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑔𝐴)
203, 5, 7, 10, 11, 13, 14, 17, 18, 19tfr1onlemsucaccv 6060 . . . . . . 7 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
212, 20eqeltrd 2161 . . . . . 6 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐴)
2221ex 113 . . . . 5 ((𝜑𝑧𝐷) → ((𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2322exlimdv 1744 . . . 4 ((𝜑𝑧𝐷) → (∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2423rexlimdva 2485 . . 3 (𝜑 → (∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2524abssdv 3084 . 2 (𝜑 → { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))} ⊆ 𝐴)
261, 25syl5eqss 3059 1 (𝜑𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 922   = wceq 1287  wex 1424  wcel 1436  {cab 2071  wral 2355  wrex 2356  Vcvv 2615  cun 2986  wss 2988  {csn 3431  cop 3434   cuni 3636  Ord word 4163  suc csuc 4166  cres 4413  Fun wfun 4975   Fn wfn 4976  cfv 4981  recscrecs 6023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-br 3821  df-opab 3875  df-tr 3912  df-id 4094  df-iord 4167  df-on 4169  df-suc 4172  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-res 4423  df-iota 4946  df-fun 4983  df-fn 4984  df-fv 4989
This theorem is referenced by:  tfr1onlembfn  6063  tfr1onlemubacc  6065
  Copyright terms: Public domain W3C validator