Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlembacc GIF version

Theorem tfr1onlembacc 6246
 Description: Lemma for tfr1on 6254. Each element of 𝐵 is an acceptable function. (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f 𝐹 = recs(𝐺)
tfr1on.g (𝜑 → Fun 𝐺)
tfr1on.x (𝜑 → Ord 𝑋)
tfr1on.ex ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
tfr1onlemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfr1onlembacc.3 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
tfr1onlembacc.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfr1onlembacc.4 (𝜑𝐷𝑋)
tfr1onlembacc.5 (𝜑 → ∀𝑧𝐷𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐺‘(𝑔𝑤))))
Assertion
Ref Expression
tfr1onlembacc (𝜑𝐵𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔,,𝑥,𝑧   𝐷,𝑓,𝑔,𝑥   𝑓,𝐺,𝑥,𝑦   𝑓,𝑋,𝑥   𝜑,𝑓,𝑔,,𝑥,𝑧   𝑦,𝑔,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑤)   𝐴(𝑦,𝑤)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐷(𝑦,𝑧,𝑤,)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑓,𝑔,)   𝐺(𝑧,𝑤,𝑔,)   𝑋(𝑦,𝑧,𝑤,𝑔,)

Proof of Theorem tfr1onlembacc
StepHypRef Expression
1 tfr1onlembacc.3 . 2 𝐵 = { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))}
2 simpr3 990 . . . . . . 7 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
3 tfr1on.f . . . . . . . 8 𝐹 = recs(𝐺)
4 tfr1on.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
54ad2antrr 480 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → Fun 𝐺)
6 tfr1on.x . . . . . . . . 9 (𝜑 → Ord 𝑋)
76ad2antrr 480 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → Ord 𝑋)
8 tfr1on.ex . . . . . . . . . 10 ((𝜑𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
983adant1r 1210 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
1093adant1r 1210 . . . . . . . 8 ((((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) ∧ 𝑥𝑋𝑓 Fn 𝑥) → (𝐺𝑓) ∈ V)
11 tfr1onlemsucfn.1 . . . . . . . 8 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
12 tfr1onlembacc.4 . . . . . . . . 9 (𝜑𝐷𝑋)
1312ad2antrr 480 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐷𝑋)
14 simplr 520 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑧𝐷)
15 tfr1onlembacc.u . . . . . . . . . 10 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
1615adantlr 469 . . . . . . . . 9 (((𝜑𝑧𝐷) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
1716adantlr 469 . . . . . . . 8 ((((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
18 simpr1 988 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑔 Fn 𝑧)
19 simpr2 989 . . . . . . . 8 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝑔𝐴)
203, 5, 7, 10, 11, 13, 14, 17, 18, 19tfr1onlemsucaccv 6245 . . . . . . 7 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
212, 20eqeltrd 2217 . . . . . 6 (((𝜑𝑧𝐷) ∧ (𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))) → 𝐴)
2221ex 114 . . . . 5 ((𝜑𝑧𝐷) → ((𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2322exlimdv 1792 . . . 4 ((𝜑𝑧𝐷) → (∃𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2423rexlimdva 2552 . . 3 (𝜑 → (∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → 𝐴))
2524abssdv 3175 . 2 (𝜑 → { ∣ ∃𝑧𝐷𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))} ⊆ 𝐴)
261, 25eqsstrid 3147 1 (𝜑𝐵𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963   = wceq 1332  ∃wex 1469   ∈ wcel 1481  {cab 2126  ∀wral 2417  ∃wrex 2418  Vcvv 2689   ∪ cun 3073   ⊆ wss 3075  {csn 3531  ⟨cop 3534  ∪ cuni 3743  Ord word 4291  suc csuc 4294   ↾ cres 4548  Fun wfun 5124   Fn wfn 5125  ‘cfv 5130  recscrecs 6208 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-tr 4034  df-id 4222  df-iord 4295  df-on 4297  df-suc 4300  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-res 4558  df-iota 5095  df-fun 5132  df-fn 5133  df-fv 5138 This theorem is referenced by:  tfr1onlembfn  6248  tfr1onlemubacc  6250
 Copyright terms: Public domain W3C validator