Proof of Theorem tfr1onlembacc
Step | Hyp | Ref
| Expression |
1 | | tfr1onlembacc.3 |
. 2
⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} |
2 | | simpr3 1000 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
3 | | tfr1on.f |
. . . . . . . 8
⊢ 𝐹 = recs(𝐺) |
4 | | tfr1on.g |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐺) |
5 | 4 | ad2antrr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → Fun 𝐺) |
6 | | tfr1on.x |
. . . . . . . . 9
⊢ (𝜑 → Ord 𝑋) |
7 | 6 | ad2antrr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → Ord 𝑋) |
8 | | tfr1on.ex |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
9 | 8 | 3adant1r 1226 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
10 | 9 | 3adant1r 1226 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓 Fn 𝑥) → (𝐺‘𝑓) ∈ V) |
11 | | tfr1onlemsucfn.1 |
. . . . . . . 8
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
12 | | tfr1onlembacc.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ 𝑋) |
13 | 12 | ad2antrr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝐷 ∈ 𝑋) |
14 | | simplr 525 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑧 ∈ 𝐷) |
15 | | tfr1onlembacc.u |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
16 | 15 | adantlr 474 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
17 | 16 | adantlr 474 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
18 | | simpr1 998 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑔 Fn 𝑧) |
19 | | simpr2 999 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → 𝑔 ∈ 𝐴) |
20 | 3, 5, 7, 10, 11, 13, 14, 17, 18, 19 | tfr1onlemsucaccv 6320 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴) |
21 | 2, 20 | eqeltrd 2247 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐷) ∧ (𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) → ℎ ∈ 𝐴) |
22 | 21 | ex 114 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → ((𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ℎ ∈ 𝐴)) |
23 | 22 | exlimdv 1812 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ℎ ∈ 𝐴)) |
24 | 23 | rexlimdva 2587 |
. . 3
⊢ (𝜑 → (∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ℎ ∈ 𝐴)) |
25 | 24 | abssdv 3221 |
. 2
⊢ (𝜑 → {ℎ ∣ ∃𝑧 ∈ 𝐷 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))} ⊆ 𝐴) |
26 | 1, 25 | eqsstrid 3193 |
1
⊢ (𝜑 → 𝐵 ⊆ 𝐴) |