ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcldm GIF version

Theorem tfrcldm 6515
Description: Recursion is defined on an ordinal if the characteristic function satisfies a closure hypothesis up to a suitable point. (Contributed by Jim Kingdon, 26-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcl.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcl.yx (𝜑𝑌 𝑋)
Assertion
Ref Expression
tfrcldm (𝜑𝑌 ∈ dom 𝐹)
Distinct variable groups:   𝑓,𝐺,𝑥   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑓)

Proof of Theorem tfrcldm
Dummy variables 𝑧 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.yx . . 3 (𝜑𝑌 𝑋)
2 eluni 3891 . . 3 (𝑌 𝑋 ↔ ∃𝑧(𝑌𝑧𝑧𝑋))
31, 2sylib 122 . 2 (𝜑 → ∃𝑧(𝑌𝑧𝑧𝑋))
4 tfrcl.f . . . 4 𝐹 = recs(𝐺)
5 tfrcl.g . . . . 5 (𝜑 → Fun 𝐺)
65adantr 276 . . . 4 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → Fun 𝐺)
7 tfrcl.x . . . . 5 (𝜑 → Ord 𝑋)
87adantr 276 . . . 4 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → Ord 𝑋)
9 tfrcl.ex . . . . 5 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
1093adant1r 1255 . . . 4 (((𝜑 ∧ (𝑌𝑧𝑧𝑋)) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
11 feq2 5457 . . . . . . . 8 (𝑎 = 𝑥 → (𝑓:𝑎𝑆𝑓:𝑥𝑆))
12 raleq 2728 . . . . . . . 8 (𝑎 = 𝑥 → (∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏)) ↔ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏))))
1311, 12anbi12d 473 . . . . . . 7 (𝑎 = 𝑥 → ((𝑓:𝑎𝑆 ∧ ∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ (𝑓:𝑥𝑆 ∧ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏)))))
1413cbvrexv 2766 . . . . . 6 (∃𝑎𝑋 (𝑓:𝑎𝑆 ∧ ∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏))))
15 fveq2 5629 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑓𝑏) = (𝑓𝑦))
16 reseq2 5000 . . . . . . . . . . 11 (𝑏 = 𝑦 → (𝑓𝑏) = (𝑓𝑦))
1716fveq2d 5633 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝐺‘(𝑓𝑏)) = (𝐺‘(𝑓𝑦)))
1815, 17eqeq12d 2244 . . . . . . . . 9 (𝑏 = 𝑦 → ((𝑓𝑏) = (𝐺‘(𝑓𝑏)) ↔ (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
1918cbvralv 2765 . . . . . . . 8 (∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏)) ↔ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))
2019anbi2i 457 . . . . . . 7 ((𝑓:𝑥𝑆 ∧ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
2120rexbii 2537 . . . . . 6 (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
2214, 21bitri 184 . . . . 5 (∃𝑎𝑋 (𝑓:𝑎𝑆 ∧ ∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
2322abbii 2345 . . . 4 {𝑓 ∣ ∃𝑎𝑋 (𝑓:𝑎𝑆 ∧ ∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏)))} = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
24 tfrcl.u . . . . 5 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
2524adantlr 477 . . . 4 (((𝜑 ∧ (𝑌𝑧𝑧𝑋)) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
26 simprr 531 . . . 4 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → 𝑧𝑋)
274, 6, 8, 10, 23, 25, 26tfrcllemres 6514 . . 3 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → 𝑧 ⊆ dom 𝐹)
28 simprl 529 . . 3 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → 𝑌𝑧)
2927, 28sseldd 3225 . 2 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → 𝑌 ∈ dom 𝐹)
303, 29exlimddv 1945 1 (𝜑𝑌 ∈ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wral 2508  wrex 2509   cuni 3888  Ord word 4453  suc csuc 4456  dom cdm 4719  cres 4721  Fun wfun 5312  wf 5314  cfv 5318  recscrecs 6456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-recs 6457
This theorem is referenced by:  tfrcl  6516  frecfcllem  6556  frecsuclem  6558
  Copyright terms: Public domain W3C validator