ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcldm GIF version

Theorem tfrcldm 6363
Description: Recursion is defined on an ordinal if the characteristic function satisfies a closure hypothesis up to a suitable point. (Contributed by Jim Kingdon, 26-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcl.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcl.yx (𝜑𝑌 𝑋)
Assertion
Ref Expression
tfrcldm (𝜑𝑌 ∈ dom 𝐹)
Distinct variable groups:   𝑓,𝐺,𝑥   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑓)

Proof of Theorem tfrcldm
Dummy variables 𝑧 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.yx . . 3 (𝜑𝑌 𝑋)
2 eluni 3812 . . 3 (𝑌 𝑋 ↔ ∃𝑧(𝑌𝑧𝑧𝑋))
31, 2sylib 122 . 2 (𝜑 → ∃𝑧(𝑌𝑧𝑧𝑋))
4 tfrcl.f . . . 4 𝐹 = recs(𝐺)
5 tfrcl.g . . . . 5 (𝜑 → Fun 𝐺)
65adantr 276 . . . 4 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → Fun 𝐺)
7 tfrcl.x . . . . 5 (𝜑 → Ord 𝑋)
87adantr 276 . . . 4 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → Ord 𝑋)
9 tfrcl.ex . . . . 5 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
1093adant1r 1231 . . . 4 (((𝜑 ∧ (𝑌𝑧𝑧𝑋)) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
11 feq2 5349 . . . . . . . 8 (𝑎 = 𝑥 → (𝑓:𝑎𝑆𝑓:𝑥𝑆))
12 raleq 2672 . . . . . . . 8 (𝑎 = 𝑥 → (∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏)) ↔ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏))))
1311, 12anbi12d 473 . . . . . . 7 (𝑎 = 𝑥 → ((𝑓:𝑎𝑆 ∧ ∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ (𝑓:𝑥𝑆 ∧ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏)))))
1413cbvrexv 2704 . . . . . 6 (∃𝑎𝑋 (𝑓:𝑎𝑆 ∧ ∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏))))
15 fveq2 5515 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑓𝑏) = (𝑓𝑦))
16 reseq2 4902 . . . . . . . . . . 11 (𝑏 = 𝑦 → (𝑓𝑏) = (𝑓𝑦))
1716fveq2d 5519 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝐺‘(𝑓𝑏)) = (𝐺‘(𝑓𝑦)))
1815, 17eqeq12d 2192 . . . . . . . . 9 (𝑏 = 𝑦 → ((𝑓𝑏) = (𝐺‘(𝑓𝑏)) ↔ (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
1918cbvralv 2703 . . . . . . . 8 (∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏)) ↔ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))
2019anbi2i 457 . . . . . . 7 ((𝑓:𝑥𝑆 ∧ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
2120rexbii 2484 . . . . . 6 (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
2214, 21bitri 184 . . . . 5 (∃𝑎𝑋 (𝑓:𝑎𝑆 ∧ ∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
2322abbii 2293 . . . 4 {𝑓 ∣ ∃𝑎𝑋 (𝑓:𝑎𝑆 ∧ ∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏)))} = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
24 tfrcl.u . . . . 5 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
2524adantlr 477 . . . 4 (((𝜑 ∧ (𝑌𝑧𝑧𝑋)) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
26 simprr 531 . . . 4 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → 𝑧𝑋)
274, 6, 8, 10, 23, 25, 26tfrcllemres 6362 . . 3 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → 𝑧 ⊆ dom 𝐹)
28 simprl 529 . . 3 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → 𝑌𝑧)
2927, 28sseldd 3156 . 2 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → 𝑌 ∈ dom 𝐹)
303, 29exlimddv 1898 1 (𝜑𝑌 ∈ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wex 1492  wcel 2148  {cab 2163  wral 2455  wrex 2456   cuni 3809  Ord word 4362  suc csuc 4365  dom cdm 4626  cres 4628  Fun wfun 5210  wf 5212  cfv 5216  recscrecs 6304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-recs 6305
This theorem is referenced by:  tfrcl  6364  frecfcllem  6404  frecsuclem  6406
  Copyright terms: Public domain W3C validator