Step | Hyp | Ref
| Expression |
1 | | tfrcl.yx |
. . 3
⊢ (𝜑 → 𝑌 ∈ ∪ 𝑋) |
2 | | eluni 3799 |
. . 3
⊢ (𝑌 ∈ ∪ 𝑋
↔ ∃𝑧(𝑌 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋)) |
3 | 1, 2 | sylib 121 |
. 2
⊢ (𝜑 → ∃𝑧(𝑌 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋)) |
4 | | tfrcl.f |
. . . 4
⊢ 𝐹 = recs(𝐺) |
5 | | tfrcl.g |
. . . . 5
⊢ (𝜑 → Fun 𝐺) |
6 | 5 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋)) → Fun 𝐺) |
7 | | tfrcl.x |
. . . . 5
⊢ (𝜑 → Ord 𝑋) |
8 | 7 | adantr 274 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋)) → Ord 𝑋) |
9 | | tfrcl.ex |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
10 | 9 | 3adant1r 1226 |
. . . 4
⊢ (((𝜑 ∧ (𝑌 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋)) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
11 | | feq2 5331 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → (𝑓:𝑎⟶𝑆 ↔ 𝑓:𝑥⟶𝑆)) |
12 | | raleq 2665 |
. . . . . . . 8
⊢ (𝑎 = 𝑥 → (∀𝑏 ∈ 𝑎 (𝑓‘𝑏) = (𝐺‘(𝑓 ↾ 𝑏)) ↔ ∀𝑏 ∈ 𝑥 (𝑓‘𝑏) = (𝐺‘(𝑓 ↾ 𝑏)))) |
13 | 11, 12 | anbi12d 470 |
. . . . . . 7
⊢ (𝑎 = 𝑥 → ((𝑓:𝑎⟶𝑆 ∧ ∀𝑏 ∈ 𝑎 (𝑓‘𝑏) = (𝐺‘(𝑓 ↾ 𝑏))) ↔ (𝑓:𝑥⟶𝑆 ∧ ∀𝑏 ∈ 𝑥 (𝑓‘𝑏) = (𝐺‘(𝑓 ↾ 𝑏))))) |
14 | 13 | cbvrexv 2697 |
. . . . . 6
⊢
(∃𝑎 ∈
𝑋 (𝑓:𝑎⟶𝑆 ∧ ∀𝑏 ∈ 𝑎 (𝑓‘𝑏) = (𝐺‘(𝑓 ↾ 𝑏))) ↔ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑏 ∈ 𝑥 (𝑓‘𝑏) = (𝐺‘(𝑓 ↾ 𝑏)))) |
15 | | fveq2 5496 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑦 → (𝑓‘𝑏) = (𝑓‘𝑦)) |
16 | | reseq2 4886 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑦 → (𝑓 ↾ 𝑏) = (𝑓 ↾ 𝑦)) |
17 | 16 | fveq2d 5500 |
. . . . . . . . . 10
⊢ (𝑏 = 𝑦 → (𝐺‘(𝑓 ↾ 𝑏)) = (𝐺‘(𝑓 ↾ 𝑦))) |
18 | 15, 17 | eqeq12d 2185 |
. . . . . . . . 9
⊢ (𝑏 = 𝑦 → ((𝑓‘𝑏) = (𝐺‘(𝑓 ↾ 𝑏)) ↔ (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))) |
19 | 18 | cbvralv 2696 |
. . . . . . . 8
⊢
(∀𝑏 ∈
𝑥 (𝑓‘𝑏) = (𝐺‘(𝑓 ↾ 𝑏)) ↔ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) |
20 | 19 | anbi2i 454 |
. . . . . . 7
⊢ ((𝑓:𝑥⟶𝑆 ∧ ∀𝑏 ∈ 𝑥 (𝑓‘𝑏) = (𝐺‘(𝑓 ↾ 𝑏))) ↔ (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))) |
21 | 20 | rexbii 2477 |
. . . . . 6
⊢
(∃𝑥 ∈
𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑏 ∈ 𝑥 (𝑓‘𝑏) = (𝐺‘(𝑓 ↾ 𝑏))) ↔ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))) |
22 | 14, 21 | bitri 183 |
. . . . 5
⊢
(∃𝑎 ∈
𝑋 (𝑓:𝑎⟶𝑆 ∧ ∀𝑏 ∈ 𝑎 (𝑓‘𝑏) = (𝐺‘(𝑓 ↾ 𝑏))) ↔ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))) |
23 | 22 | abbii 2286 |
. . . 4
⊢ {𝑓 ∣ ∃𝑎 ∈ 𝑋 (𝑓:𝑎⟶𝑆 ∧ ∀𝑏 ∈ 𝑎 (𝑓‘𝑏) = (𝐺‘(𝑓 ↾ 𝑏)))} = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
24 | | tfrcl.u |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
25 | 24 | adantlr 474 |
. . . 4
⊢ (((𝜑 ∧ (𝑌 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋)) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
26 | | simprr 527 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
27 | 4, 6, 8, 10, 23, 25, 26 | tfrcllemres 6341 |
. . 3
⊢ ((𝜑 ∧ (𝑌 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ⊆ dom 𝐹) |
28 | | simprl 526 |
. . 3
⊢ ((𝜑 ∧ (𝑌 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋)) → 𝑌 ∈ 𝑧) |
29 | 27, 28 | sseldd 3148 |
. 2
⊢ ((𝜑 ∧ (𝑌 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋)) → 𝑌 ∈ dom 𝐹) |
30 | 3, 29 | exlimddv 1891 |
1
⊢ (𝜑 → 𝑌 ∈ dom 𝐹) |