ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcldm GIF version

Theorem tfrcldm 6416
Description: Recursion is defined on an ordinal if the characteristic function satisfies a closure hypothesis up to a suitable point. (Contributed by Jim Kingdon, 26-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcl.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcl.yx (𝜑𝑌 𝑋)
Assertion
Ref Expression
tfrcldm (𝜑𝑌 ∈ dom 𝐹)
Distinct variable groups:   𝑓,𝐺,𝑥   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑓)

Proof of Theorem tfrcldm
Dummy variables 𝑧 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.yx . . 3 (𝜑𝑌 𝑋)
2 eluni 3838 . . 3 (𝑌 𝑋 ↔ ∃𝑧(𝑌𝑧𝑧𝑋))
31, 2sylib 122 . 2 (𝜑 → ∃𝑧(𝑌𝑧𝑧𝑋))
4 tfrcl.f . . . 4 𝐹 = recs(𝐺)
5 tfrcl.g . . . . 5 (𝜑 → Fun 𝐺)
65adantr 276 . . . 4 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → Fun 𝐺)
7 tfrcl.x . . . . 5 (𝜑 → Ord 𝑋)
87adantr 276 . . . 4 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → Ord 𝑋)
9 tfrcl.ex . . . . 5 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
1093adant1r 1233 . . . 4 (((𝜑 ∧ (𝑌𝑧𝑧𝑋)) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
11 feq2 5387 . . . . . . . 8 (𝑎 = 𝑥 → (𝑓:𝑎𝑆𝑓:𝑥𝑆))
12 raleq 2690 . . . . . . . 8 (𝑎 = 𝑥 → (∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏)) ↔ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏))))
1311, 12anbi12d 473 . . . . . . 7 (𝑎 = 𝑥 → ((𝑓:𝑎𝑆 ∧ ∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ (𝑓:𝑥𝑆 ∧ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏)))))
1413cbvrexv 2727 . . . . . 6 (∃𝑎𝑋 (𝑓:𝑎𝑆 ∧ ∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏))))
15 fveq2 5554 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑓𝑏) = (𝑓𝑦))
16 reseq2 4937 . . . . . . . . . . 11 (𝑏 = 𝑦 → (𝑓𝑏) = (𝑓𝑦))
1716fveq2d 5558 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝐺‘(𝑓𝑏)) = (𝐺‘(𝑓𝑦)))
1815, 17eqeq12d 2208 . . . . . . . . 9 (𝑏 = 𝑦 → ((𝑓𝑏) = (𝐺‘(𝑓𝑏)) ↔ (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
1918cbvralv 2726 . . . . . . . 8 (∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏)) ↔ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))
2019anbi2i 457 . . . . . . 7 ((𝑓:𝑥𝑆 ∧ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
2120rexbii 2501 . . . . . 6 (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑏𝑥 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
2214, 21bitri 184 . . . . 5 (∃𝑎𝑋 (𝑓:𝑎𝑆 ∧ ∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏))) ↔ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))))
2322abbii 2309 . . . 4 {𝑓 ∣ ∃𝑎𝑋 (𝑓:𝑎𝑆 ∧ ∀𝑏𝑎 (𝑓𝑏) = (𝐺‘(𝑓𝑏)))} = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
24 tfrcl.u . . . . 5 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
2524adantlr 477 . . . 4 (((𝜑 ∧ (𝑌𝑧𝑧𝑋)) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
26 simprr 531 . . . 4 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → 𝑧𝑋)
274, 6, 8, 10, 23, 25, 26tfrcllemres 6415 . . 3 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → 𝑧 ⊆ dom 𝐹)
28 simprl 529 . . 3 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → 𝑌𝑧)
2927, 28sseldd 3180 . 2 ((𝜑 ∧ (𝑌𝑧𝑧𝑋)) → 𝑌 ∈ dom 𝐹)
303, 29exlimddv 1910 1 (𝜑𝑌 ∈ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wral 2472  wrex 2473   cuni 3835  Ord word 4393  suc csuc 4396  dom cdm 4659  cres 4661  Fun wfun 5248  wf 5250  cfv 5254  recscrecs 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-recs 6358
This theorem is referenced by:  tfrcl  6417  frecfcllem  6457  frecsuclem  6459
  Copyright terms: Public domain W3C validator