Step | Hyp | Ref
| Expression |
1 | | tfrcl.x |
. . . . . . . . . 10
⊢ (𝜑 → Ord 𝑋) |
2 | 1 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → Ord 𝑋) |
3 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ 𝑌) |
4 | | tfrcllemres.yx |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ 𝑋) |
5 | 4 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑌 ∈ 𝑋) |
6 | 3, 5 | jca 304 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → (𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋)) |
7 | | ordtr1 4373 |
. . . . . . . . 9
⊢ (Ord
𝑋 → ((𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋) → 𝑧 ∈ 𝑋)) |
8 | 2, 6, 7 | sylc 62 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ 𝑋) |
9 | | tfrcl.f |
. . . . . . . . 9
⊢ 𝐹 = recs(𝐺) |
10 | | tfrcl.g |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐺) |
11 | | tfrcl.ex |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
12 | | tfrcllemsucfn.1 |
. . . . . . . . 9
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} |
13 | | tfrcllemres.u |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
14 | 9, 10, 1, 11, 12, 13 | tfrcllemaccex 6340 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
15 | 8, 14 | syldan 280 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
16 | 10 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → Fun 𝐺) |
17 | 1 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → Ord 𝑋) |
18 | 11 | 3adant1r 1226 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
19 | 18 | 3adant1r 1226 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
20 | 4 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑌 ∈ 𝑋) |
21 | 3 | adantr 274 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑧 ∈ 𝑌) |
22 | 13 | adantlr 474 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
23 | 22 | adantlr 474 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) |
24 | | simprl 526 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑔:𝑧⟶𝑆) |
25 | | feq2 5331 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑔:𝑥⟶𝑆 ↔ 𝑔:𝑧⟶𝑆)) |
26 | | raleq 2665 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)) ↔ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
27 | 25, 26 | anbi12d 470 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) ↔ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) |
28 | | fveq2 5496 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑢 → (𝑔‘𝑦) = (𝑔‘𝑢)) |
29 | | reseq2 4886 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑢 → (𝑔 ↾ 𝑦) = (𝑔 ↾ 𝑢)) |
30 | 29 | fveq2d 5500 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑢 → (𝐺‘(𝑔 ↾ 𝑦)) = (𝐺‘(𝑔 ↾ 𝑢))) |
31 | 28, 30 | eqeq12d 2185 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑢 → ((𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)) ↔ (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
32 | 31 | cbvralv 2696 |
. . . . . . . . . . . . . 14
⊢
(∀𝑦 ∈
𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)) ↔ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))) |
33 | 32 | anbi2i 454 |
. . . . . . . . . . . . 13
⊢ ((𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) ↔ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) |
34 | 27, 33 | bitrdi 195 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) ↔ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) |
35 | 34 | rspcev 2834 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑋 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
36 | 8, 35 | sylan 281 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
37 | | vex 2733 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
38 | | feq1 5330 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓:𝑥⟶𝑆 ↔ 𝑔:𝑥⟶𝑆)) |
39 | | fveq1 5495 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (𝑓‘𝑦) = (𝑔‘𝑦)) |
40 | | reseq1 4885 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (𝑓 ↾ 𝑦) = (𝑔 ↾ 𝑦)) |
41 | 40 | fveq2d 5500 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (𝐺‘(𝑓 ↾ 𝑦)) = (𝐺‘(𝑔 ↾ 𝑦))) |
42 | 39, 41 | eqeq12d 2185 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
43 | 42 | ralbidv 2470 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
44 | 38, 43 | anbi12d 470 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) |
45 | 44 | rexbidv 2471 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) |
46 | 37, 45, 12 | elab2 2878 |
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) |
47 | 36, 46 | sylibr 133 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑔 ∈ 𝐴) |
48 | 9, 16, 17, 19, 12, 20, 21, 23, 24, 47 | tfrcllemsucaccv 6333 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴) |
49 | | vex 2733 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
50 | 25 | imbi1d 230 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑔:𝑥⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆) ↔ (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆))) |
51 | 11 | 3expia 1200 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
52 | 51 | alrimiv 1867 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) |
53 | | fveq2 5496 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) |
54 | 53 | eleq1d 2239 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ 𝑆 ↔ (𝐺‘𝑔) ∈ 𝑆)) |
55 | 38, 54 | imbi12d 233 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → ((𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑔:𝑥⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆))) |
56 | 55 | spv 1853 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) → (𝑔:𝑥⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) |
57 | 52, 56 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑔:𝑥⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) |
58 | 57 | ralrimiva 2543 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) |
59 | 58 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → ∀𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) |
60 | 50, 59, 8 | rspcdva 2839 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) |
61 | 60 | imp 123 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ 𝑔:𝑧⟶𝑆) → (𝐺‘𝑔) ∈ 𝑆) |
62 | 24, 61 | syldan 280 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → (𝐺‘𝑔) ∈ 𝑆) |
63 | | opexg 4213 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ 𝑆) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) |
64 | 49, 62, 63 | sylancr 412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) |
65 | | snidg 3612 |
. . . . . . . . . 10
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ V → 〈𝑧, (𝐺‘𝑔)〉 ∈ {〈𝑧, (𝐺‘𝑔)〉}) |
66 | | elun2 3295 |
. . . . . . . . . 10
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ {〈𝑧, (𝐺‘𝑔)〉} → 〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
67 | 64, 65, 66 | 3syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
68 | | opeldmg 4816 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ 𝑆) → (〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) |
69 | 49, 62, 68 | sylancr 412 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → (〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) |
70 | 67, 69 | mpd 13 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
71 | | dmeq 4811 |
. . . . . . . . . 10
⊢ (ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → dom ℎ = dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) |
72 | 71 | eleq2d 2240 |
. . . . . . . . 9
⊢ (ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (𝑧 ∈ dom ℎ ↔ 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) |
73 | 72 | rspcev 2834 |
. . . . . . . 8
⊢ (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴 ∧ 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) |
74 | 48, 70, 73 | syl2anc 409 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) |
75 | 15, 74 | exlimddv 1891 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) |
76 | | eliun 3877 |
. . . . . 6
⊢ (𝑧 ∈ ∪ ℎ
∈ 𝐴 dom ℎ ↔ ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) |
77 | 75, 76 | sylibr 133 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ ∪
ℎ ∈ 𝐴 dom ℎ) |
78 | 77 | ex 114 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ 𝑌 → 𝑧 ∈ ∪
ℎ ∈ 𝐴 dom ℎ)) |
79 | 78 | ssrdv 3153 |
. . 3
⊢ (𝜑 → 𝑌 ⊆ ∪
ℎ ∈ 𝐴 dom ℎ) |
80 | | dmuni 4821 |
. . . 4
⊢ dom ∪ 𝐴 =
∪ ℎ ∈ 𝐴 dom ℎ |
81 | 12, 1 | tfrcllemssrecs 6331 |
. . . . 5
⊢ (𝜑 → ∪ 𝐴
⊆ recs(𝐺)) |
82 | | dmss 4810 |
. . . . 5
⊢ (∪ 𝐴
⊆ recs(𝐺) → dom
∪ 𝐴 ⊆ dom recs(𝐺)) |
83 | 81, 82 | syl 14 |
. . . 4
⊢ (𝜑 → dom ∪ 𝐴
⊆ dom recs(𝐺)) |
84 | 80, 83 | eqsstrrid 3194 |
. . 3
⊢ (𝜑 → ∪ ℎ
∈ 𝐴 dom ℎ ⊆ dom recs(𝐺)) |
85 | 79, 84 | sstrd 3157 |
. 2
⊢ (𝜑 → 𝑌 ⊆ dom recs(𝐺)) |
86 | 9 | dmeqi 4812 |
. 2
⊢ dom 𝐹 = dom recs(𝐺) |
87 | 85, 86 | sseqtrrdi 3196 |
1
⊢ (𝜑 → 𝑌 ⊆ dom 𝐹) |