| Step | Hyp | Ref
 | Expression | 
| 1 |   | tfrcl.x | 
. . . . . . . . . 10
⊢ (𝜑 → Ord 𝑋) | 
| 2 | 1 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → Ord 𝑋) | 
| 3 |   | simpr 110 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ 𝑌) | 
| 4 |   | tfrcllemres.yx | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ 𝑋) | 
| 5 | 4 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑌 ∈ 𝑋) | 
| 6 | 3, 5 | jca 306 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → (𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋)) | 
| 7 |   | ordtr1 4423 | 
. . . . . . . . 9
⊢ (Ord
𝑋 → ((𝑧 ∈ 𝑌 ∧ 𝑌 ∈ 𝑋) → 𝑧 ∈ 𝑋)) | 
| 8 | 2, 6, 7 | sylc 62 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ 𝑋) | 
| 9 |   | tfrcl.f | 
. . . . . . . . 9
⊢ 𝐹 = recs(𝐺) | 
| 10 |   | tfrcl.g | 
. . . . . . . . 9
⊢ (𝜑 → Fun 𝐺) | 
| 11 |   | tfrcl.ex | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) | 
| 12 |   | tfrcllemsucfn.1 | 
. . . . . . . . 9
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | 
| 13 |   | tfrcllemres.u | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | 
| 14 | 9, 10, 1, 11, 12, 13 | tfrcllemaccex 6419 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | 
| 15 | 8, 14 | syldan 282 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → ∃𝑔(𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | 
| 16 | 10 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → Fun 𝐺) | 
| 17 | 1 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → Ord 𝑋) | 
| 18 | 11 | 3adant1r 1233 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) | 
| 19 | 18 | 3adant1r 1233 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) ∧ 𝑥 ∈ 𝑋 ∧ 𝑓:𝑥⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) | 
| 20 | 4 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑌 ∈ 𝑋) | 
| 21 | 3 | adantr 276 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑧 ∈ 𝑌) | 
| 22 | 13 | adantlr 477 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | 
| 23 | 22 | adantlr 477 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) ∧ 𝑥 ∈ ∪ 𝑋) → suc 𝑥 ∈ 𝑋) | 
| 24 |   | simprl 529 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑔:𝑧⟶𝑆) | 
| 25 |   | feq2 5391 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (𝑔:𝑥⟶𝑆 ↔ 𝑔:𝑧⟶𝑆)) | 
| 26 |   | raleq 2693 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)) ↔ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 27 | 25, 26 | anbi12d 473 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → ((𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) ↔ (𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) | 
| 28 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑢 → (𝑔‘𝑦) = (𝑔‘𝑢)) | 
| 29 |   | reseq2 4941 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑢 → (𝑔 ↾ 𝑦) = (𝑔 ↾ 𝑢)) | 
| 30 | 29 | fveq2d 5562 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑢 → (𝐺‘(𝑔 ↾ 𝑦)) = (𝐺‘(𝑔 ↾ 𝑢))) | 
| 31 | 28, 30 | eqeq12d 2211 | 
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑢 → ((𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)) ↔ (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | 
| 32 | 31 | cbvralv 2729 | 
. . . . . . . . . . . . . 14
⊢
(∀𝑦 ∈
𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)) ↔ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))) | 
| 33 | 32 | anbi2i 457 | 
. . . . . . . . . . . . 13
⊢ ((𝑔:𝑧⟶𝑆 ∧ ∀𝑦 ∈ 𝑧 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) ↔ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) | 
| 34 | 27, 33 | bitrdi 196 | 
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))) ↔ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢))))) | 
| 35 | 34 | rspcev 2868 | 
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑋 ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 36 | 8, 35 | sylan 283 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 37 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑔 ∈ V | 
| 38 |   | feq1 5390 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓:𝑥⟶𝑆 ↔ 𝑔:𝑥⟶𝑆)) | 
| 39 |   | fveq1 5557 | 
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (𝑓‘𝑦) = (𝑔‘𝑦)) | 
| 40 |   | reseq1 4940 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (𝑓 ↾ 𝑦) = (𝑔 ↾ 𝑦)) | 
| 41 | 40 | fveq2d 5562 | 
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (𝐺‘(𝑓 ↾ 𝑦)) = (𝐺‘(𝑔 ↾ 𝑦))) | 
| 42 | 39, 41 | eqeq12d 2211 | 
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 43 | 42 | ralbidv 2497 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)) ↔ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 44 | 38, 43 | anbi12d 473 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) | 
| 45 | 44 | rexbidv 2498 | 
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (∃𝑥 ∈ 𝑋 (𝑓:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦))) ↔ ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦))))) | 
| 46 | 37, 45, 12 | elab2 2912 | 
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 ∧ ∀𝑦 ∈ 𝑥 (𝑔‘𝑦) = (𝐺‘(𝑔 ↾ 𝑦)))) | 
| 47 | 36, 46 | sylibr 134 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑔 ∈ 𝐴) | 
| 48 | 9, 16, 17, 19, 12, 20, 21, 23, 24, 47 | tfrcllemsucaccv 6412 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴) | 
| 49 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑧 ∈ V | 
| 50 | 25 | imbi1d 231 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ((𝑔:𝑥⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆) ↔ (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆))) | 
| 51 | 11 | 3expia 1207 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) | 
| 52 | 51 | alrimiv 1888 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆)) | 
| 53 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑔 → (𝐺‘𝑓) = (𝐺‘𝑔)) | 
| 54 | 53 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 = 𝑔 → ((𝐺‘𝑓) ∈ 𝑆 ↔ (𝐺‘𝑔) ∈ 𝑆)) | 
| 55 | 38, 54 | imbi12d 234 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → ((𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) ↔ (𝑔:𝑥⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆))) | 
| 56 | 55 | spv 1874 | 
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑓(𝑓:𝑥⟶𝑆 → (𝐺‘𝑓) ∈ 𝑆) → (𝑔:𝑥⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) | 
| 57 | 52, 56 | syl 14 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑔:𝑥⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) | 
| 58 | 57 | ralrimiva 2570 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) | 
| 59 | 58 | adantr 276 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → ∀𝑥 ∈ 𝑋 (𝑔:𝑥⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) | 
| 60 | 50, 59, 8 | rspcdva 2873 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → (𝑔:𝑧⟶𝑆 → (𝐺‘𝑔) ∈ 𝑆)) | 
| 61 | 60 | imp 124 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ 𝑔:𝑧⟶𝑆) → (𝐺‘𝑔) ∈ 𝑆) | 
| 62 | 24, 61 | syldan 282 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → (𝐺‘𝑔) ∈ 𝑆) | 
| 63 |   | opexg 4261 | 
. . . . . . . . . . 11
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ 𝑆) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) | 
| 64 | 49, 62, 63 | sylancr 414 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ V) | 
| 65 |   | snidg 3651 | 
. . . . . . . . . 10
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ V → 〈𝑧, (𝐺‘𝑔)〉 ∈ {〈𝑧, (𝐺‘𝑔)〉}) | 
| 66 |   | elun2 3331 | 
. . . . . . . . . 10
⊢
(〈𝑧, (𝐺‘𝑔)〉 ∈ {〈𝑧, (𝐺‘𝑔)〉} → 〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) | 
| 67 | 64, 65, 66 | 3syl 17 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) | 
| 68 |   | opeldmg 4871 | 
. . . . . . . . . 10
⊢ ((𝑧 ∈ V ∧ (𝐺‘𝑔) ∈ 𝑆) → (〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) | 
| 69 | 49, 62, 68 | sylancr 414 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → (〈𝑧, (𝐺‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) | 
| 70 | 67, 69 | mpd 13 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) | 
| 71 |   | dmeq 4866 | 
. . . . . . . . . 10
⊢ (ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → dom ℎ = dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) | 
| 72 | 71 | eleq2d 2266 | 
. . . . . . . . 9
⊢ (ℎ = (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) → (𝑧 ∈ dom ℎ ↔ 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}))) | 
| 73 | 72 | rspcev 2868 | 
. . . . . . . 8
⊢ (((𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉}) ∈ 𝐴 ∧ 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐺‘𝑔)〉})) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) | 
| 74 | 48, 70, 73 | syl2anc 411 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑌) ∧ (𝑔:𝑧⟶𝑆 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐺‘(𝑔 ↾ 𝑢)))) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) | 
| 75 | 15, 74 | exlimddv 1913 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) | 
| 76 |   | eliun 3920 | 
. . . . . 6
⊢ (𝑧 ∈ ∪ ℎ
∈ 𝐴 dom ℎ ↔ ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) | 
| 77 | 75, 76 | sylibr 134 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑌) → 𝑧 ∈ ∪
ℎ ∈ 𝐴 dom ℎ) | 
| 78 | 77 | ex 115 | 
. . . 4
⊢ (𝜑 → (𝑧 ∈ 𝑌 → 𝑧 ∈ ∪
ℎ ∈ 𝐴 dom ℎ)) | 
| 79 | 78 | ssrdv 3189 | 
. . 3
⊢ (𝜑 → 𝑌 ⊆ ∪
ℎ ∈ 𝐴 dom ℎ) | 
| 80 |   | dmuni 4876 | 
. . . 4
⊢ dom ∪ 𝐴 =
∪ ℎ ∈ 𝐴 dom ℎ | 
| 81 | 12, 1 | tfrcllemssrecs 6410 | 
. . . . 5
⊢ (𝜑 → ∪ 𝐴
⊆ recs(𝐺)) | 
| 82 |   | dmss 4865 | 
. . . . 5
⊢ (∪ 𝐴
⊆ recs(𝐺) → dom
∪ 𝐴 ⊆ dom recs(𝐺)) | 
| 83 | 81, 82 | syl 14 | 
. . . 4
⊢ (𝜑 → dom ∪ 𝐴
⊆ dom recs(𝐺)) | 
| 84 | 80, 83 | eqsstrrid 3230 | 
. . 3
⊢ (𝜑 → ∪ ℎ
∈ 𝐴 dom ℎ ⊆ dom recs(𝐺)) | 
| 85 | 79, 84 | sstrd 3193 | 
. 2
⊢ (𝜑 → 𝑌 ⊆ dom recs(𝐺)) | 
| 86 | 9 | dmeqi 4867 | 
. 2
⊢ dom 𝐹 = dom recs(𝐺) | 
| 87 | 85, 86 | sseqtrrdi 3232 | 
1
⊢ (𝜑 → 𝑌 ⊆ dom 𝐹) |