ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemres GIF version

Theorem tfrcllemres 6415
Description: Lemma for tfr1on 6403. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemres.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllemres.yx (𝜑𝑌𝑋)
Assertion
Ref Expression
tfrcllemres (𝜑𝑌 ⊆ dom 𝐹)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑓)   𝐹(𝑥,𝑦,𝑓)

Proof of Theorem tfrcllemres
Dummy variables 𝑔 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.x . . . . . . . . . 10 (𝜑 → Ord 𝑋)
21adantr 276 . . . . . . . . 9 ((𝜑𝑧𝑌) → Ord 𝑋)
3 simpr 110 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑧𝑌)
4 tfrcllemres.yx . . . . . . . . . . 11 (𝜑𝑌𝑋)
54adantr 276 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑌𝑋)
63, 5jca 306 . . . . . . . . 9 ((𝜑𝑧𝑌) → (𝑧𝑌𝑌𝑋))
7 ordtr1 4419 . . . . . . . . 9 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
82, 6, 7sylc 62 . . . . . . . 8 ((𝜑𝑧𝑌) → 𝑧𝑋)
9 tfrcl.f . . . . . . . . 9 𝐹 = recs(𝐺)
10 tfrcl.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
11 tfrcl.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
12 tfrcllemsucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
13 tfrcllemres.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
149, 10, 1, 11, 12, 13tfrcllemaccex 6414 . . . . . . . 8 ((𝜑𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
158, 14syldan 282 . . . . . . 7 ((𝜑𝑧𝑌) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
1610ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Fun 𝐺)
171ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Ord 𝑋)
18113adant1r 1233 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
19183adant1r 1233 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
204ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑌𝑋)
213adantr 276 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧𝑌)
2213adantlr 477 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
2322adantlr 477 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
24 simprl 529 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔:𝑧𝑆)
25 feq2 5387 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑔:𝑥𝑆𝑔:𝑧𝑆))
26 raleq 2690 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
2725, 26anbi12d 473 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
28 fveq2 5554 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (𝑔𝑦) = (𝑔𝑢))
29 reseq2 4937 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (𝑔𝑦) = (𝑔𝑢))
3029fveq2d 5558 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (𝐺‘(𝑔𝑦)) = (𝐺‘(𝑔𝑢)))
3128, 30eqeq12d 2208 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3231cbvralv 2726 . . . . . . . . . . . . . 14 (∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
3332anbi2i 457 . . . . . . . . . . . . 13 ((𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3427, 33bitrdi 196 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
3534rspcev 2864 . . . . . . . . . . 11 ((𝑧𝑋 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
368, 35sylan 283 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
37 vex 2763 . . . . . . . . . . 11 𝑔 ∈ V
38 feq1 5386 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓:𝑥𝑆𝑔:𝑥𝑆))
39 fveq1 5553 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
40 reseq1 4936 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
4140fveq2d 5558 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑔𝑦)))
4239, 41eqeq12d 2208 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4342ralbidv 2494 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4438, 43anbi12d 473 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
4544rexbidv 2495 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
4637, 45, 12elab2 2908 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4736, 46sylibr 134 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔𝐴)
489, 16, 17, 19, 12, 20, 21, 23, 24, 47tfrcllemsucaccv 6407 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
49 vex 2763 . . . . . . . . . . 11 𝑧 ∈ V
5025imbi1d 231 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
51113expia 1207 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
5251alrimiv 1885 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
53 fveq2 5554 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
5453eleq1d 2262 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
5538, 54imbi12d 234 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆)))
5655spv 1871 . . . . . . . . . . . . . . . . 17 (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5752, 56syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5857ralrimiva 2567 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋 (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5958adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑌) → ∀𝑥𝑋 (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
6050, 59, 8rspcdva 2869 . . . . . . . . . . . . 13 ((𝜑𝑧𝑌) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
6160imp 124 . . . . . . . . . . . 12 (((𝜑𝑧𝑌) ∧ 𝑔:𝑧𝑆) → (𝐺𝑔) ∈ 𝑆)
6224, 61syldan 282 . . . . . . . . . . 11 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝐺𝑔) ∈ 𝑆)
63 opexg 4257 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
6449, 62, 63sylancr 414 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
65 snidg 3647 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
66 elun2 3327 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
6764, 65, 663syl 17 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
68 opeldmg 4867 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
6949, 62, 68sylancr 414 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
7067, 69mpd 13 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
71 dmeq 4862 . . . . . . . . . 10 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → dom = dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
7271eleq2d 2263 . . . . . . . . 9 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑧 ∈ dom 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
7372rspcev 2864 . . . . . . . 8 (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝐴 𝑧 ∈ dom )
7448, 70, 73syl2anc 411 . . . . . . 7 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝐴 𝑧 ∈ dom )
7515, 74exlimddv 1910 . . . . . 6 ((𝜑𝑧𝑌) → ∃𝐴 𝑧 ∈ dom )
76 eliun 3916 . . . . . 6 (𝑧 𝐴 dom ↔ ∃𝐴 𝑧 ∈ dom )
7775, 76sylibr 134 . . . . 5 ((𝜑𝑧𝑌) → 𝑧 𝐴 dom )
7877ex 115 . . . 4 (𝜑 → (𝑧𝑌𝑧 𝐴 dom ))
7978ssrdv 3185 . . 3 (𝜑𝑌 𝐴 dom )
80 dmuni 4872 . . . 4 dom 𝐴 = 𝐴 dom
8112, 1tfrcllemssrecs 6405 . . . . 5 (𝜑 𝐴 ⊆ recs(𝐺))
82 dmss 4861 . . . . 5 ( 𝐴 ⊆ recs(𝐺) → dom 𝐴 ⊆ dom recs(𝐺))
8381, 82syl 14 . . . 4 (𝜑 → dom 𝐴 ⊆ dom recs(𝐺))
8480, 83eqsstrrid 3226 . . 3 (𝜑 𝐴 dom ⊆ dom recs(𝐺))
8579, 84sstrd 3189 . 2 (𝜑𝑌 ⊆ dom recs(𝐺))
869dmeqi 4863 . 2 dom 𝐹 = dom recs(𝐺)
8785, 86sseqtrrdi 3228 1 (𝜑𝑌 ⊆ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wal 1362   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wral 2472  wrex 2473  Vcvv 2760  cun 3151  wss 3153  {csn 3618  cop 3621   cuni 3835   ciun 3912  Ord word 4393  suc csuc 4396  dom cdm 4659  cres 4661  Fun wfun 5248  wf 5250  cfv 5254  recscrecs 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-recs 6358
This theorem is referenced by:  tfrcldm  6416
  Copyright terms: Public domain W3C validator