ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemres GIF version

Theorem tfrcllemres 6506
Description: Lemma for tfr1on 6494. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemres.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllemres.yx (𝜑𝑌𝑋)
Assertion
Ref Expression
tfrcllemres (𝜑𝑌 ⊆ dom 𝐹)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑓)   𝐹(𝑥,𝑦,𝑓)

Proof of Theorem tfrcllemres
Dummy variables 𝑔 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.x . . . . . . . . . 10 (𝜑 → Ord 𝑋)
21adantr 276 . . . . . . . . 9 ((𝜑𝑧𝑌) → Ord 𝑋)
3 simpr 110 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑧𝑌)
4 tfrcllemres.yx . . . . . . . . . . 11 (𝜑𝑌𝑋)
54adantr 276 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑌𝑋)
63, 5jca 306 . . . . . . . . 9 ((𝜑𝑧𝑌) → (𝑧𝑌𝑌𝑋))
7 ordtr1 4478 . . . . . . . . 9 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
82, 6, 7sylc 62 . . . . . . . 8 ((𝜑𝑧𝑌) → 𝑧𝑋)
9 tfrcl.f . . . . . . . . 9 𝐹 = recs(𝐺)
10 tfrcl.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
11 tfrcl.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
12 tfrcllemsucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
13 tfrcllemres.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
149, 10, 1, 11, 12, 13tfrcllemaccex 6505 . . . . . . . 8 ((𝜑𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
158, 14syldan 282 . . . . . . 7 ((𝜑𝑧𝑌) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
1610ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Fun 𝐺)
171ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Ord 𝑋)
18113adant1r 1255 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
19183adant1r 1255 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
204ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑌𝑋)
213adantr 276 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧𝑌)
2213adantlr 477 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
2322adantlr 477 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
24 simprl 529 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔:𝑧𝑆)
25 feq2 5456 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑔:𝑥𝑆𝑔:𝑧𝑆))
26 raleq 2728 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
2725, 26anbi12d 473 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
28 fveq2 5626 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (𝑔𝑦) = (𝑔𝑢))
29 reseq2 4999 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (𝑔𝑦) = (𝑔𝑢))
3029fveq2d 5630 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (𝐺‘(𝑔𝑦)) = (𝐺‘(𝑔𝑢)))
3128, 30eqeq12d 2244 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3231cbvralv 2765 . . . . . . . . . . . . . 14 (∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
3332anbi2i 457 . . . . . . . . . . . . 13 ((𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3427, 33bitrdi 196 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
3534rspcev 2907 . . . . . . . . . . 11 ((𝑧𝑋 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
368, 35sylan 283 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
37 vex 2802 . . . . . . . . . . 11 𝑔 ∈ V
38 feq1 5455 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓:𝑥𝑆𝑔:𝑥𝑆))
39 fveq1 5625 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
40 reseq1 4998 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
4140fveq2d 5630 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑔𝑦)))
4239, 41eqeq12d 2244 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4342ralbidv 2530 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4438, 43anbi12d 473 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
4544rexbidv 2531 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
4637, 45, 12elab2 2951 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4736, 46sylibr 134 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔𝐴)
489, 16, 17, 19, 12, 20, 21, 23, 24, 47tfrcllemsucaccv 6498 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
49 vex 2802 . . . . . . . . . . 11 𝑧 ∈ V
5025imbi1d 231 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
51113expia 1229 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
5251alrimiv 1920 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
53 fveq2 5626 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
5453eleq1d 2298 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
5538, 54imbi12d 234 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆)))
5655spv 1906 . . . . . . . . . . . . . . . . 17 (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5752, 56syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5857ralrimiva 2603 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋 (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5958adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑌) → ∀𝑥𝑋 (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
6050, 59, 8rspcdva 2912 . . . . . . . . . . . . 13 ((𝜑𝑧𝑌) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
6160imp 124 . . . . . . . . . . . 12 (((𝜑𝑧𝑌) ∧ 𝑔:𝑧𝑆) → (𝐺𝑔) ∈ 𝑆)
6224, 61syldan 282 . . . . . . . . . . 11 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝐺𝑔) ∈ 𝑆)
63 opexg 4313 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
6449, 62, 63sylancr 414 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
65 snidg 3695 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
66 elun2 3372 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
6764, 65, 663syl 17 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
68 opeldmg 4927 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
6949, 62, 68sylancr 414 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
7067, 69mpd 13 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
71 dmeq 4922 . . . . . . . . . 10 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → dom = dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
7271eleq2d 2299 . . . . . . . . 9 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑧 ∈ dom 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
7372rspcev 2907 . . . . . . . 8 (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝐴 𝑧 ∈ dom )
7448, 70, 73syl2anc 411 . . . . . . 7 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝐴 𝑧 ∈ dom )
7515, 74exlimddv 1945 . . . . . 6 ((𝜑𝑧𝑌) → ∃𝐴 𝑧 ∈ dom )
76 eliun 3968 . . . . . 6 (𝑧 𝐴 dom ↔ ∃𝐴 𝑧 ∈ dom )
7775, 76sylibr 134 . . . . 5 ((𝜑𝑧𝑌) → 𝑧 𝐴 dom )
7877ex 115 . . . 4 (𝜑 → (𝑧𝑌𝑧 𝐴 dom ))
7978ssrdv 3230 . . 3 (𝜑𝑌 𝐴 dom )
80 dmuni 4932 . . . 4 dom 𝐴 = 𝐴 dom
8112, 1tfrcllemssrecs 6496 . . . . 5 (𝜑 𝐴 ⊆ recs(𝐺))
82 dmss 4921 . . . . 5 ( 𝐴 ⊆ recs(𝐺) → dom 𝐴 ⊆ dom recs(𝐺))
8381, 82syl 14 . . . 4 (𝜑 → dom 𝐴 ⊆ dom recs(𝐺))
8480, 83eqsstrrid 3271 . . 3 (𝜑 𝐴 dom ⊆ dom recs(𝐺))
8579, 84sstrd 3234 . 2 (𝜑𝑌 ⊆ dom recs(𝐺))
869dmeqi 4923 . 2 dom 𝐹 = dom recs(𝐺)
8785, 86sseqtrrdi 3273 1 (𝜑𝑌 ⊆ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002  wal 1393   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wral 2508  wrex 2509  Vcvv 2799  cun 3195  wss 3197  {csn 3666  cop 3669   cuni 3887   ciun 3964  Ord word 4452  suc csuc 4455  dom cdm 4718  cres 4720  Fun wfun 5311  wf 5313  cfv 5317  recscrecs 6448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-recs 6449
This theorem is referenced by:  tfrcldm  6507
  Copyright terms: Public domain W3C validator