ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemres GIF version

Theorem tfrcllemres 6267
Description: Lemma for tfr1on 6255. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemres.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllemres.yx (𝜑𝑌𝑋)
Assertion
Ref Expression
tfrcllemres (𝜑𝑌 ⊆ dom 𝐹)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑓)   𝐹(𝑥,𝑦,𝑓)

Proof of Theorem tfrcllemres
Dummy variables 𝑔 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.x . . . . . . . . . 10 (𝜑 → Ord 𝑋)
21adantr 274 . . . . . . . . 9 ((𝜑𝑧𝑌) → Ord 𝑋)
3 simpr 109 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑧𝑌)
4 tfrcllemres.yx . . . . . . . . . . 11 (𝜑𝑌𝑋)
54adantr 274 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑌𝑋)
63, 5jca 304 . . . . . . . . 9 ((𝜑𝑧𝑌) → (𝑧𝑌𝑌𝑋))
7 ordtr1 4318 . . . . . . . . 9 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
82, 6, 7sylc 62 . . . . . . . 8 ((𝜑𝑧𝑌) → 𝑧𝑋)
9 tfrcl.f . . . . . . . . 9 𝐹 = recs(𝐺)
10 tfrcl.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
11 tfrcl.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
12 tfrcllemsucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
13 tfrcllemres.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
149, 10, 1, 11, 12, 13tfrcllemaccex 6266 . . . . . . . 8 ((𝜑𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
158, 14syldan 280 . . . . . . 7 ((𝜑𝑧𝑌) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
1610ad2antrr 480 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Fun 𝐺)
171ad2antrr 480 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Ord 𝑋)
18113adant1r 1210 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
19183adant1r 1210 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
204ad2antrr 480 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑌𝑋)
213adantr 274 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧𝑌)
2213adantlr 469 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
2322adantlr 469 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
24 simprl 521 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔:𝑧𝑆)
25 feq2 5264 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑔:𝑥𝑆𝑔:𝑧𝑆))
26 raleq 2629 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
2725, 26anbi12d 465 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
28 fveq2 5429 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (𝑔𝑦) = (𝑔𝑢))
29 reseq2 4822 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (𝑔𝑦) = (𝑔𝑢))
3029fveq2d 5433 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (𝐺‘(𝑔𝑦)) = (𝐺‘(𝑔𝑢)))
3128, 30eqeq12d 2155 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3231cbvralv 2657 . . . . . . . . . . . . . 14 (∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
3332anbi2i 453 . . . . . . . . . . . . 13 ((𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3427, 33syl6bb 195 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
3534rspcev 2793 . . . . . . . . . . 11 ((𝑧𝑋 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
368, 35sylan 281 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
37 vex 2692 . . . . . . . . . . 11 𝑔 ∈ V
38 feq1 5263 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓:𝑥𝑆𝑔:𝑥𝑆))
39 fveq1 5428 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
40 reseq1 4821 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
4140fveq2d 5433 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑔𝑦)))
4239, 41eqeq12d 2155 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4342ralbidv 2438 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4438, 43anbi12d 465 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
4544rexbidv 2439 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
4637, 45, 12elab2 2836 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4736, 46sylibr 133 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔𝐴)
489, 16, 17, 19, 12, 20, 21, 23, 24, 47tfrcllemsucaccv 6259 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
49 vex 2692 . . . . . . . . . . 11 𝑧 ∈ V
5025imbi1d 230 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
51113expia 1184 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
5251alrimiv 1847 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
53 fveq2 5429 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
5453eleq1d 2209 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
5538, 54imbi12d 233 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆)))
5655spv 1833 . . . . . . . . . . . . . . . . 17 (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5752, 56syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5857ralrimiva 2508 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋 (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5958adantr 274 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑌) → ∀𝑥𝑋 (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
6050, 59, 8rspcdva 2798 . . . . . . . . . . . . 13 ((𝜑𝑧𝑌) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
6160imp 123 . . . . . . . . . . . 12 (((𝜑𝑧𝑌) ∧ 𝑔:𝑧𝑆) → (𝐺𝑔) ∈ 𝑆)
6224, 61syldan 280 . . . . . . . . . . 11 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝐺𝑔) ∈ 𝑆)
63 opexg 4158 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
6449, 62, 63sylancr 411 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
65 snidg 3561 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
66 elun2 3249 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
6764, 65, 663syl 17 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
68 opeldmg 4752 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
6949, 62, 68sylancr 411 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
7067, 69mpd 13 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
71 dmeq 4747 . . . . . . . . . 10 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → dom = dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
7271eleq2d 2210 . . . . . . . . 9 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑧 ∈ dom 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
7372rspcev 2793 . . . . . . . 8 (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝐴 𝑧 ∈ dom )
7448, 70, 73syl2anc 409 . . . . . . 7 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝐴 𝑧 ∈ dom )
7515, 74exlimddv 1871 . . . . . 6 ((𝜑𝑧𝑌) → ∃𝐴 𝑧 ∈ dom )
76 eliun 3825 . . . . . 6 (𝑧 𝐴 dom ↔ ∃𝐴 𝑧 ∈ dom )
7775, 76sylibr 133 . . . . 5 ((𝜑𝑧𝑌) → 𝑧 𝐴 dom )
7877ex 114 . . . 4 (𝜑 → (𝑧𝑌𝑧 𝐴 dom ))
7978ssrdv 3108 . . 3 (𝜑𝑌 𝐴 dom )
80 dmuni 4757 . . . 4 dom 𝐴 = 𝐴 dom
8112, 1tfrcllemssrecs 6257 . . . . 5 (𝜑 𝐴 ⊆ recs(𝐺))
82 dmss 4746 . . . . 5 ( 𝐴 ⊆ recs(𝐺) → dom 𝐴 ⊆ dom recs(𝐺))
8381, 82syl 14 . . . 4 (𝜑 → dom 𝐴 ⊆ dom recs(𝐺))
8480, 83eqsstrrid 3149 . . 3 (𝜑 𝐴 dom ⊆ dom recs(𝐺))
8579, 84sstrd 3112 . 2 (𝜑𝑌 ⊆ dom recs(𝐺))
869dmeqi 4748 . 2 dom 𝐹 = dom recs(𝐺)
8785, 86sseqtrrdi 3151 1 (𝜑𝑌 ⊆ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963  wal 1330   = wceq 1332  wex 1469  wcel 1481  {cab 2126  wral 2417  wrex 2418  Vcvv 2689  cun 3074  wss 3076  {csn 3532  cop 3535   cuni 3744   ciun 3821  Ord word 4292  suc csuc 4295  dom cdm 4547  cres 4549  Fun wfun 5125  wf 5127  cfv 5131  recscrecs 6209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-recs 6210
This theorem is referenced by:  tfrcldm  6268
  Copyright terms: Public domain W3C validator