ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrcllemres GIF version

Theorem tfrcllemres 6438
Description: Lemma for tfr1on 6426. Recursion is defined on an ordinal if the characteristic function is defined up to a suitable point. (Contributed by Jim Kingdon, 18-Mar-2022.)
Hypotheses
Ref Expression
tfrcl.f 𝐹 = recs(𝐺)
tfrcl.g (𝜑 → Fun 𝐺)
tfrcl.x (𝜑 → Ord 𝑋)
tfrcl.ex ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
tfrcllemsucfn.1 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
tfrcllemres.u ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
tfrcllemres.yx (𝜑𝑌𝑋)
Assertion
Ref Expression
tfrcllemres (𝜑𝑌 ⊆ dom 𝐹)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑓,𝐺,𝑥,𝑦   𝑆,𝑓,𝑥,𝑦   𝑓,𝑋,𝑥,𝑦   𝑓,𝑌,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑓)   𝐹(𝑥,𝑦,𝑓)

Proof of Theorem tfrcllemres
Dummy variables 𝑔 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrcl.x . . . . . . . . . 10 (𝜑 → Ord 𝑋)
21adantr 276 . . . . . . . . 9 ((𝜑𝑧𝑌) → Ord 𝑋)
3 simpr 110 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑧𝑌)
4 tfrcllemres.yx . . . . . . . . . . 11 (𝜑𝑌𝑋)
54adantr 276 . . . . . . . . . 10 ((𝜑𝑧𝑌) → 𝑌𝑋)
63, 5jca 306 . . . . . . . . 9 ((𝜑𝑧𝑌) → (𝑧𝑌𝑌𝑋))
7 ordtr1 4433 . . . . . . . . 9 (Ord 𝑋 → ((𝑧𝑌𝑌𝑋) → 𝑧𝑋))
82, 6, 7sylc 62 . . . . . . . 8 ((𝜑𝑧𝑌) → 𝑧𝑋)
9 tfrcl.f . . . . . . . . 9 𝐹 = recs(𝐺)
10 tfrcl.g . . . . . . . . 9 (𝜑 → Fun 𝐺)
11 tfrcl.ex . . . . . . . . 9 ((𝜑𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
12 tfrcllemsucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
13 tfrcllemres.u . . . . . . . . 9 ((𝜑𝑥 𝑋) → suc 𝑥𝑋)
149, 10, 1, 11, 12, 13tfrcllemaccex 6437 . . . . . . . 8 ((𝜑𝑧𝑋) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
158, 14syldan 282 . . . . . . 7 ((𝜑𝑧𝑌) → ∃𝑔(𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
1610ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Fun 𝐺)
171ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → Ord 𝑋)
18113adant1r 1233 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
19183adant1r 1233 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥𝑋𝑓:𝑥𝑆) → (𝐺𝑓) ∈ 𝑆)
204ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑌𝑋)
213adantr 276 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧𝑌)
2213adantlr 477 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
2322adantlr 477 . . . . . . . . 9 ((((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) ∧ 𝑥 𝑋) → suc 𝑥𝑋)
24 simprl 529 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔:𝑧𝑆)
25 feq2 5403 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝑔:𝑥𝑆𝑔:𝑧𝑆))
26 raleq 2701 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
2725, 26anbi12d 473 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
28 fveq2 5570 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (𝑔𝑦) = (𝑔𝑢))
29 reseq2 4951 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → (𝑔𝑦) = (𝑔𝑢))
3029fveq2d 5574 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑢 → (𝐺‘(𝑔𝑦)) = (𝐺‘(𝑔𝑢)))
3128, 30eqeq12d 2219 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → ((𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3231cbvralv 2737 . . . . . . . . . . . . . 14 (∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))
3332anbi2i 457 . . . . . . . . . . . . 13 ((𝑔:𝑧𝑆 ∧ ∀𝑦𝑧 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢))))
3427, 33bitrdi 196 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))) ↔ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))))
3534rspcev 2876 . . . . . . . . . . 11 ((𝑧𝑋 ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
368, 35sylan 283 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
37 vex 2774 . . . . . . . . . . 11 𝑔 ∈ V
38 feq1 5402 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓:𝑥𝑆𝑔:𝑥𝑆))
39 fveq1 5569 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
40 reseq1 4950 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓𝑦) = (𝑔𝑦))
4140fveq2d 5574 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (𝐺‘(𝑓𝑦)) = (𝐺‘(𝑔𝑦)))
4239, 41eqeq12d 2219 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → ((𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4342ralbidv 2505 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4438, 43anbi12d 473 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
4544rexbidv 2506 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∃𝑥𝑋 (𝑓:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦))) ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦)))))
4637, 45, 12elab2 2920 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑥𝑋 (𝑔:𝑥𝑆 ∧ ∀𝑦𝑥 (𝑔𝑦) = (𝐺‘(𝑔𝑦))))
4736, 46sylibr 134 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑔𝐴)
489, 16, 17, 19, 12, 20, 21, 23, 24, 47tfrcllemsucaccv 6430 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴)
49 vex 2774 . . . . . . . . . . 11 𝑧 ∈ V
5025imbi1d 231 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ((𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆) ↔ (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆)))
51113expia 1207 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝑋) → (𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
5251alrimiv 1896 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝑋) → ∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆))
53 fveq2 5570 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑔 → (𝐺𝑓) = (𝐺𝑔))
5453eleq1d 2273 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑔 → ((𝐺𝑓) ∈ 𝑆 ↔ (𝐺𝑔) ∈ 𝑆))
5538, 54imbi12d 234 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → ((𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) ↔ (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆)))
5655spv 1882 . . . . . . . . . . . . . . . . 17 (∀𝑓(𝑓:𝑥𝑆 → (𝐺𝑓) ∈ 𝑆) → (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5752, 56syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5857ralrimiva 2578 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋 (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
5958adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑌) → ∀𝑥𝑋 (𝑔:𝑥𝑆 → (𝐺𝑔) ∈ 𝑆))
6050, 59, 8rspcdva 2881 . . . . . . . . . . . . 13 ((𝜑𝑧𝑌) → (𝑔:𝑧𝑆 → (𝐺𝑔) ∈ 𝑆))
6160imp 124 . . . . . . . . . . . 12 (((𝜑𝑧𝑌) ∧ 𝑔:𝑧𝑆) → (𝐺𝑔) ∈ 𝑆)
6224, 61syldan 282 . . . . . . . . . . 11 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (𝐺𝑔) ∈ 𝑆)
63 opexg 4271 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
6449, 62, 63sylancr 414 . . . . . . . . . 10 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ V)
65 snidg 3661 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ V → ⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩})
66 elun2 3340 . . . . . . . . . 10 (⟨𝑧, (𝐺𝑔)⟩ ∈ {⟨𝑧, (𝐺𝑔)⟩} → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
6764, 65, 663syl 17 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
68 opeldmg 4881 . . . . . . . . . 10 ((𝑧 ∈ V ∧ (𝐺𝑔) ∈ 𝑆) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
6949, 62, 68sylancr 414 . . . . . . . . 9 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → (⟨𝑧, (𝐺𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
7067, 69mpd 13 . . . . . . . 8 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
71 dmeq 4876 . . . . . . . . . 10 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → dom = dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}))
7271eleq2d 2274 . . . . . . . . 9 ( = (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) → (𝑧 ∈ dom 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})))
7372rspcev 2876 . . . . . . . 8 (((𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩}) ∈ 𝐴𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐺𝑔)⟩})) → ∃𝐴 𝑧 ∈ dom )
7448, 70, 73syl2anc 411 . . . . . . 7 (((𝜑𝑧𝑌) ∧ (𝑔:𝑧𝑆 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐺‘(𝑔𝑢)))) → ∃𝐴 𝑧 ∈ dom )
7515, 74exlimddv 1921 . . . . . 6 ((𝜑𝑧𝑌) → ∃𝐴 𝑧 ∈ dom )
76 eliun 3930 . . . . . 6 (𝑧 𝐴 dom ↔ ∃𝐴 𝑧 ∈ dom )
7775, 76sylibr 134 . . . . 5 ((𝜑𝑧𝑌) → 𝑧 𝐴 dom )
7877ex 115 . . . 4 (𝜑 → (𝑧𝑌𝑧 𝐴 dom ))
7978ssrdv 3198 . . 3 (𝜑𝑌 𝐴 dom )
80 dmuni 4886 . . . 4 dom 𝐴 = 𝐴 dom
8112, 1tfrcllemssrecs 6428 . . . . 5 (𝜑 𝐴 ⊆ recs(𝐺))
82 dmss 4875 . . . . 5 ( 𝐴 ⊆ recs(𝐺) → dom 𝐴 ⊆ dom recs(𝐺))
8381, 82syl 14 . . . 4 (𝜑 → dom 𝐴 ⊆ dom recs(𝐺))
8480, 83eqsstrrid 3239 . . 3 (𝜑 𝐴 dom ⊆ dom recs(𝐺))
8579, 84sstrd 3202 . 2 (𝜑𝑌 ⊆ dom recs(𝐺))
869dmeqi 4877 . 2 dom 𝐹 = dom recs(𝐺)
8785, 86sseqtrrdi 3241 1 (𝜑𝑌 ⊆ dom 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wal 1370   = wceq 1372  wex 1514  wcel 2175  {cab 2190  wral 2483  wrex 2484  Vcvv 2771  cun 3163  wss 3165  {csn 3632  cop 3635   cuni 3849   ciun 3926  Ord word 4407  suc csuc 4410  dom cdm 4673  cres 4675  Fun wfun 5262  wf 5264  cfv 5268  recscrecs 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-recs 6381
This theorem is referenced by:  tfrcldm  6439
  Copyright terms: Public domain W3C validator