| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrid | GIF version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrid.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqbrtrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
| 2 | eqbrtrid.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | eqid 2196 | . 2 ⊢ 𝐶 = 𝐶 | |
| 4 | 1, 2, 3 | 3brtr4g 4068 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 class class class wbr 4034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: xp1en 6891 caucvgprlemm 7754 intqfrac2 10430 m1modge3gt1 10482 bernneq2 10772 reccn2ap 11497 eirraplem 11961 nno 12090 bitsfzolem 12138 bitsinv1lem 12145 oddprmge3 12330 sqnprm 12331 4sqlem6 12579 4sqlem13m 12599 4sqlem16 12602 4sqlem17 12603 2expltfac 12635 oddennn 12636 strle2g 12812 strle3g 12813 1strstrg 12821 2strstrg 12823 rngstrg 12839 srngstrd 12850 lmodstrd 12868 ipsstrd 12880 topgrpstrd 12900 imasvalstrd 12974 znidom 14291 psmetge0 14675 reeff1olem 15115 cosq14gt0 15176 cosq34lt1 15194 ioocosf1o 15198 mersenne 15341 gausslemma2dlem0c 15400 gausslemma2dlem0e 15402 lgseisenlem1 15419 lgsquadlem1 15426 lgsquadlem2 15427 lgsquadlem3 15428 pwf1oexmid 15754 trilpolemeq1 15797 |
| Copyright terms: Public domain | W3C validator |