Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqbrtrid | GIF version |
Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrid.1 | ⊢ 𝐴 = 𝐵 |
eqbrtrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
eqbrtrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
2 | eqbrtrid.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | eqid 2170 | . 2 ⊢ 𝐶 = 𝐶 | |
4 | 1, 2, 3 | 3brtr4g 4023 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 |
This theorem is referenced by: xp1en 6801 caucvgprlemm 7630 intqfrac2 10275 m1modge3gt1 10327 bernneq2 10597 reccn2ap 11276 eirraplem 11739 nno 11865 oddprmge3 12089 sqnprm 12090 4sqlem6 12335 oddennn 12347 strle2g 12509 strle3g 12510 1strstrg 12516 2strstrg 12518 rngstrg 12533 srngstrd 12540 lmodstrd 12551 ipsstrd 12559 topgrpstrd 12569 psmetge0 13125 reeff1olem 13486 cosq14gt0 13547 cosq34lt1 13565 ioocosf1o 13569 pwf1oexmid 14032 trilpolemeq1 14072 |
Copyright terms: Public domain | W3C validator |