| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrid | GIF version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrid.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqbrtrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
| 2 | eqbrtrid.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | eqid 2229 | . 2 ⊢ 𝐶 = 𝐶 | |
| 4 | 1, 2, 3 | 3brtr4g 4116 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 class class class wbr 4082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 |
| This theorem is referenced by: rex2dom 6969 xp1en 6978 caucvgprlemm 7851 intqfrac2 10536 m1modge3gt1 10588 bernneq2 10878 reccn2ap 11819 eirraplem 12283 nno 12412 bitsfzolem 12460 bitsinv1lem 12467 oddprmge3 12652 sqnprm 12653 4sqlem6 12901 4sqlem13m 12921 4sqlem16 12924 4sqlem17 12925 2expltfac 12957 oddennn 12958 strle2g 13135 strle3g 13136 1strstrg 13144 2strstrndx 13146 2strstrg 13147 rngstrg 13163 srngstrd 13174 lmodstrd 13192 ipsstrd 13204 topgrpstrd 13224 imasvalstrd 13298 znidom 14615 psmetge0 14999 reeff1olem 15439 cosq14gt0 15500 cosq34lt1 15518 ioocosf1o 15522 mersenne 15665 gausslemma2dlem0c 15724 gausslemma2dlem0e 15726 lgseisenlem1 15743 lgsquadlem1 15750 lgsquadlem2 15751 lgsquadlem3 15752 pwf1oexmid 16324 trilpolemeq1 16367 |
| Copyright terms: Public domain | W3C validator |