| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrid | GIF version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrid.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqbrtrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
| 2 | eqbrtrid.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | eqid 2206 | . 2 ⊢ 𝐶 = 𝐶 | |
| 4 | 1, 2, 3 | 3brtr4g 4084 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 class class class wbr 4050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3643 df-pr 3644 df-op 3646 df-br 4051 |
| This theorem is referenced by: rex2dom 6923 xp1en 6932 caucvgprlemm 7796 intqfrac2 10481 m1modge3gt1 10533 bernneq2 10823 reccn2ap 11694 eirraplem 12158 nno 12287 bitsfzolem 12335 bitsinv1lem 12342 oddprmge3 12527 sqnprm 12528 4sqlem6 12776 4sqlem13m 12796 4sqlem16 12799 4sqlem17 12800 2expltfac 12832 oddennn 12833 strle2g 13009 strle3g 13010 1strstrg 13018 2strstrndx 13020 2strstrg 13021 rngstrg 13037 srngstrd 13048 lmodstrd 13066 ipsstrd 13078 topgrpstrd 13098 imasvalstrd 13172 znidom 14489 psmetge0 14873 reeff1olem 15313 cosq14gt0 15374 cosq34lt1 15392 ioocosf1o 15396 mersenne 15539 gausslemma2dlem0c 15598 gausslemma2dlem0e 15600 lgseisenlem1 15617 lgsquadlem1 15624 lgsquadlem2 15625 lgsquadlem3 15626 pwf1oexmid 16071 trilpolemeq1 16114 |
| Copyright terms: Public domain | W3C validator |