| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrid | GIF version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrid.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqbrtrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
| 2 | eqbrtrid.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | eqid 2196 | . 2 ⊢ 𝐶 = 𝐶 | |
| 4 | 1, 2, 3 | 3brtr4g 4067 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 class class class wbr 4033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 |
| This theorem is referenced by: xp1en 6882 caucvgprlemm 7735 intqfrac2 10411 m1modge3gt1 10463 bernneq2 10753 reccn2ap 11478 eirraplem 11942 nno 12071 bitsfzolem 12118 oddprmge3 12303 sqnprm 12304 4sqlem6 12552 4sqlem13m 12572 4sqlem16 12575 4sqlem17 12576 2expltfac 12608 oddennn 12609 strle2g 12785 strle3g 12786 1strstrg 12794 2strstrg 12796 rngstrg 12812 srngstrd 12823 lmodstrd 12841 ipsstrd 12853 topgrpstrd 12873 znidom 14213 psmetge0 14567 reeff1olem 15007 cosq14gt0 15068 cosq34lt1 15086 ioocosf1o 15090 mersenne 15233 gausslemma2dlem0c 15292 gausslemma2dlem0e 15294 lgseisenlem1 15311 lgsquadlem1 15318 lgsquadlem2 15319 lgsquadlem3 15320 pwf1oexmid 15644 trilpolemeq1 15684 |
| Copyright terms: Public domain | W3C validator |