Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqbrtrid | GIF version |
Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrid.1 | ⊢ 𝐴 = 𝐵 |
eqbrtrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
eqbrtrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
2 | eqbrtrid.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | eqid 2157 | . 2 ⊢ 𝐶 = 𝐶 | |
4 | 1, 2, 3 | 3brtr4g 3998 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 class class class wbr 3965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 |
This theorem is referenced by: xp1en 6761 caucvgprlemm 7571 intqfrac2 10200 m1modge3gt1 10252 bernneq2 10521 reccn2ap 11192 eirraplem 11655 nno 11778 oddprmge3 11991 sqnprm 11992 oddennn 12093 strle2g 12241 strle3g 12242 1strstrg 12248 2strstrg 12250 rngstrg 12265 srngstrd 12272 lmodstrd 12283 ipsstrd 12291 topgrpstrd 12301 psmetge0 12691 reeff1olem 13052 cosq14gt0 13113 cosq34lt1 13131 ioocosf1o 13135 pwf1oexmid 13531 trilpolemeq1 13573 |
Copyright terms: Public domain | W3C validator |