| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrid | GIF version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrid.1 | ⊢ 𝐴 = 𝐵 |
| eqbrtrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqbrtrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
| 2 | eqbrtrid.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | eqid 2196 | . 2 ⊢ 𝐶 = 𝐶 | |
| 4 | 1, 2, 3 | 3brtr4g 4068 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 class class class wbr 4034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: xp1en 6891 caucvgprlemm 7752 intqfrac2 10428 m1modge3gt1 10480 bernneq2 10770 reccn2ap 11495 eirraplem 11959 nno 12088 bitsfzolem 12136 bitsinv1lem 12143 oddprmge3 12328 sqnprm 12329 4sqlem6 12577 4sqlem13m 12597 4sqlem16 12600 4sqlem17 12601 2expltfac 12633 oddennn 12634 strle2g 12810 strle3g 12811 1strstrg 12819 2strstrg 12821 rngstrg 12837 srngstrd 12848 lmodstrd 12866 ipsstrd 12878 topgrpstrd 12898 imasvalstrd 12972 znidom 14289 psmetge0 14651 reeff1olem 15091 cosq14gt0 15152 cosq34lt1 15170 ioocosf1o 15174 mersenne 15317 gausslemma2dlem0c 15376 gausslemma2dlem0e 15378 lgseisenlem1 15395 lgsquadlem1 15402 lgsquadlem2 15403 lgsquadlem3 15404 pwf1oexmid 15730 trilpolemeq1 15771 |
| Copyright terms: Public domain | W3C validator |