Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqbrtrid | GIF version |
Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrid.1 | ⊢ 𝐴 = 𝐵 |
eqbrtrid.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
eqbrtrid | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrid.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
2 | eqbrtrid.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | eqid 2165 | . 2 ⊢ 𝐶 = 𝐶 | |
4 | 1, 2, 3 | 3brtr4g 4016 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: xp1en 6789 caucvgprlemm 7609 intqfrac2 10254 m1modge3gt1 10306 bernneq2 10576 reccn2ap 11254 eirraplem 11717 nno 11843 oddprmge3 12067 sqnprm 12068 4sqlem6 12313 oddennn 12325 strle2g 12486 strle3g 12487 1strstrg 12493 2strstrg 12495 rngstrg 12510 srngstrd 12517 lmodstrd 12528 ipsstrd 12536 topgrpstrd 12546 psmetge0 12971 reeff1olem 13332 cosq14gt0 13393 cosq34lt1 13411 ioocosf1o 13415 pwf1oexmid 13879 trilpolemeq1 13919 |
Copyright terms: Public domain | W3C validator |