ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crth GIF version

Theorem crth 12226
Description: The Chinese Remainder Theorem: the function that maps 𝑥 to its remainder classes mod 𝑀 and mod 𝑁 is 1-1 and onto when 𝑀 and 𝑁 are coprime. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
crth.1 𝑆 = (0..^(𝑀 · 𝑁))
crth.2 𝑇 = ((0..^𝑀) × (0..^𝑁))
crth.3 𝐹 = (𝑥𝑆 ↦ ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩)
crth.4 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1))
Assertion
Ref Expression
crth (𝜑𝐹:𝑆1-1-onto𝑇)
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝑥,𝑆   𝑥,𝑇   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem crth
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 10149 . . . . . 6 (𝑥 ∈ (0..^(𝑀 · 𝑁)) → 𝑥 ∈ ℤ)
2 crth.1 . . . . . 6 𝑆 = (0..^(𝑀 · 𝑁))
31, 2eleq2s 2272 . . . . 5 (𝑥𝑆𝑥 ∈ ℤ)
4 simpr 110 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
5 crth.4 . . . . . . . . . 10 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1))
65simp1d 1009 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
76adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → 𝑀 ∈ ℕ)
8 zmodfzo 10349 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑥 mod 𝑀) ∈ (0..^𝑀))
94, 7, 8syl2anc 411 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → (𝑥 mod 𝑀) ∈ (0..^𝑀))
105simp2d 1010 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
1110adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ ℤ) → 𝑁 ∈ ℕ)
12 zmodfzo 10349 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑥 mod 𝑁) ∈ (0..^𝑁))
134, 11, 12syl2anc 411 . . . . . . 7 ((𝜑𝑥 ∈ ℤ) → (𝑥 mod 𝑁) ∈ (0..^𝑁))
14 opelxpi 4660 . . . . . . 7 (((𝑥 mod 𝑀) ∈ (0..^𝑀) ∧ (𝑥 mod 𝑁) ∈ (0..^𝑁)) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ ((0..^𝑀) × (0..^𝑁)))
159, 13, 14syl2anc 411 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ ((0..^𝑀) × (0..^𝑁)))
16 crth.2 . . . . . 6 𝑇 = ((0..^𝑀) × (0..^𝑁))
1715, 16eleqtrrdi 2271 . . . . 5 ((𝜑𝑥 ∈ ℤ) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ 𝑇)
183, 17sylan2 286 . . . 4 ((𝜑𝑥𝑆) → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ ∈ 𝑇)
19 crth.3 . . . 4 𝐹 = (𝑥𝑆 ↦ ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩)
2018, 19fmptd 5672 . . 3 (𝜑𝐹:𝑆𝑇)
21 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦𝑆)
22 elfzoelz 10149 . . . . . . . . . . . . 13 (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 𝑦 ∈ ℤ)
2322, 2eleq2s 2272 . . . . . . . . . . . 12 (𝑦𝑆𝑦 ∈ ℤ)
2423ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ ℤ)
25 zq 9628 . . . . . . . . . . 11 (𝑦 ∈ ℤ → 𝑦 ∈ ℚ)
2624, 25syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ ℚ)
276adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑀 ∈ ℕ)
28 nnq 9635 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℚ)
2927, 28syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑀 ∈ ℚ)
3027nngt0d 8965 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 0 < 𝑀)
3126, 29, 30modqcld 10330 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑦 mod 𝑀) ∈ ℚ)
3210adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑁 ∈ ℕ)
33 nnq 9635 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
3432, 33syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑁 ∈ ℚ)
3532nngt0d 8965 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 0 < 𝑁)
3626, 34, 35modqcld 10330 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑦 mod 𝑁) ∈ ℚ)
37 opexg 4230 . . . . . . . . 9 (((𝑦 mod 𝑀) ∈ ℚ ∧ (𝑦 mod 𝑁) ∈ ℚ) → ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ ∈ V)
3831, 36, 37syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ ∈ V)
39 oveq1 5884 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 mod 𝑀) = (𝑦 mod 𝑀))
40 oveq1 5884 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 mod 𝑁) = (𝑦 mod 𝑁))
4139, 40opeq12d 3788 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ = ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩)
4241, 19fvmptg 5594 . . . . . . . 8 ((𝑦𝑆 ∧ ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ ∈ V) → (𝐹𝑦) = ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩)
4321, 38, 42syl2anc 411 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝐹𝑦) = ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩)
44 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧𝑆)
45 elfzoelz 10149 . . . . . . . . . . . . 13 (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 𝑧 ∈ ℤ)
4645, 2eleq2s 2272 . . . . . . . . . . . 12 (𝑧𝑆𝑧 ∈ ℤ)
4744, 46syl 14 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ ℤ)
48 zq 9628 . . . . . . . . . . 11 (𝑧 ∈ ℤ → 𝑧 ∈ ℚ)
4947, 48syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ ℚ)
5049, 29, 30modqcld 10330 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑧 mod 𝑀) ∈ ℚ)
5149, 34, 35modqcld 10330 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑧 mod 𝑁) ∈ ℚ)
52 opexg 4230 . . . . . . . . 9 (((𝑧 mod 𝑀) ∈ ℚ ∧ (𝑧 mod 𝑁) ∈ ℚ) → ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩ ∈ V)
5350, 51, 52syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩ ∈ V)
54 oveq1 5884 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 mod 𝑀) = (𝑧 mod 𝑀))
55 oveq1 5884 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 mod 𝑁) = (𝑧 mod 𝑁))
5654, 55opeq12d 3788 . . . . . . . . 9 (𝑥 = 𝑧 → ⟨(𝑥 mod 𝑀), (𝑥 mod 𝑁)⟩ = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩)
5756, 19fvmptg 5594 . . . . . . . 8 ((𝑧𝑆 ∧ ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩ ∈ V) → (𝐹𝑧) = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩)
5844, 53, 57syl2anc 411 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝐹𝑧) = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩)
5943, 58eqeq12d 2192 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩))
60 opthg 4240 . . . . . . 7 (((𝑦 mod 𝑀) ∈ ℚ ∧ (𝑦 mod 𝑁) ∈ ℚ) → (⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩ ↔ ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁))))
6131, 36, 60syl2anc 411 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (⟨(𝑦 mod 𝑀), (𝑦 mod 𝑁)⟩ = ⟨(𝑧 mod 𝑀), (𝑧 mod 𝑁)⟩ ↔ ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁))))
6259, 61bitrd 188 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁))))
6327nnzd 9376 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑀 ∈ ℤ)
6432nnzd 9376 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑁 ∈ ℤ)
6521, 2eleqtrdi 2270 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ (0..^(𝑀 · 𝑁)))
6665, 22syl 14 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 ∈ ℤ)
6744, 2eleqtrdi 2270 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ (0..^(𝑀 · 𝑁)))
6867, 45syl 14 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 ∈ ℤ)
6966, 68zsubcld 9382 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑦𝑧) ∈ ℤ)
705simp3d 1011 . . . . . . . 8 (𝜑 → (𝑀 gcd 𝑁) = 1)
7170adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑀 gcd 𝑁) = 1)
72 coprmdvds2 12095 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑦𝑧) ∈ ℤ) ∧ (𝑀 gcd 𝑁) = 1) → ((𝑀 ∥ (𝑦𝑧) ∧ 𝑁 ∥ (𝑦𝑧)) → (𝑀 · 𝑁) ∥ (𝑦𝑧)))
7363, 64, 69, 71, 72syl31anc 1241 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑀 ∥ (𝑦𝑧) ∧ 𝑁 ∥ (𝑦𝑧)) → (𝑀 · 𝑁) ∥ (𝑦𝑧)))
74 moddvds 11808 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ↔ 𝑀 ∥ (𝑦𝑧)))
7527, 66, 68, 74syl3anc 1238 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ↔ 𝑀 ∥ (𝑦𝑧)))
76 moddvds 11808 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ (𝑦𝑧)))
7732, 66, 68, 76syl3anc 1238 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod 𝑁) = (𝑧 mod 𝑁) ↔ 𝑁 ∥ (𝑦𝑧)))
7875, 77anbi12d 473 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)) ↔ (𝑀 ∥ (𝑦𝑧) ∧ 𝑁 ∥ (𝑦𝑧))))
79 qmulcl 9639 . . . . . . . . . 10 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 · 𝑁) ∈ ℚ)
8029, 34, 79syl2anc 411 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑀 · 𝑁) ∈ ℚ)
81 elfzole1 10157 . . . . . . . . . 10 (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 0 ≤ 𝑦)
8265, 81syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 0 ≤ 𝑦)
83 elfzolt2 10158 . . . . . . . . . 10 (𝑦 ∈ (0..^(𝑀 · 𝑁)) → 𝑦 < (𝑀 · 𝑁))
8465, 83syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑦 < (𝑀 · 𝑁))
85 modqid 10351 . . . . . . . . 9 (((𝑦 ∈ ℚ ∧ (𝑀 · 𝑁) ∈ ℚ) ∧ (0 ≤ 𝑦𝑦 < (𝑀 · 𝑁))) → (𝑦 mod (𝑀 · 𝑁)) = 𝑦)
8626, 80, 82, 84, 85syl22anc 1239 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑦 mod (𝑀 · 𝑁)) = 𝑦)
87 elfzole1 10157 . . . . . . . . . 10 (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 0 ≤ 𝑧)
8867, 87syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 0 ≤ 𝑧)
89 elfzolt2 10158 . . . . . . . . . 10 (𝑧 ∈ (0..^(𝑀 · 𝑁)) → 𝑧 < (𝑀 · 𝑁))
9067, 89syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → 𝑧 < (𝑀 · 𝑁))
91 modqid 10351 . . . . . . . . 9 (((𝑧 ∈ ℚ ∧ (𝑀 · 𝑁) ∈ ℚ) ∧ (0 ≤ 𝑧𝑧 < (𝑀 · 𝑁))) → (𝑧 mod (𝑀 · 𝑁)) = 𝑧)
9249, 80, 88, 90, 91syl22anc 1239 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑧 mod (𝑀 · 𝑁)) = 𝑧)
9386, 92eqeq12d 2192 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ 𝑦 = 𝑧))
9427, 32nnmulcld 8970 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑀 · 𝑁) ∈ ℕ)
95 moddvds 11808 . . . . . . . 8 (((𝑀 · 𝑁) ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ (𝑀 · 𝑁) ∥ (𝑦𝑧)))
9694, 66, 68, 95syl3anc 1238 . . . . . . 7 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝑦 mod (𝑀 · 𝑁)) = (𝑧 mod (𝑀 · 𝑁)) ↔ (𝑀 · 𝑁) ∥ (𝑦𝑧)))
9793, 96bitr3d 190 . . . . . 6 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (𝑦 = 𝑧 ↔ (𝑀 · 𝑁) ∥ (𝑦𝑧)))
9873, 78, 973imtr4d 203 . . . . 5 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → (((𝑦 mod 𝑀) = (𝑧 mod 𝑀) ∧ (𝑦 mod 𝑁) = (𝑧 mod 𝑁)) → 𝑦 = 𝑧))
9962, 98sylbid 150 . . . 4 ((𝜑 ∧ (𝑦𝑆𝑧𝑆)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
10099ralrimivva 2559 . . 3 (𝜑 → ∀𝑦𝑆𝑧𝑆 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
101 dff13 5771 . . 3 (𝐹:𝑆1-1𝑇 ↔ (𝐹:𝑆𝑇 ∧ ∀𝑦𝑆𝑧𝑆 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
10220, 100, 101sylanbrc 417 . 2 (𝜑𝐹:𝑆1-1𝑇)
103 nnnn0 9185 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
104 nnnn0 9185 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
105 hashfzo0 10805 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (♯‘(0..^𝑀)) = 𝑀)
106 hashfzo0 10805 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
107105, 106oveqan12d 5896 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((♯‘(0..^𝑀)) · (♯‘(0..^𝑁))) = (𝑀 · 𝑁))
108 0z 9266 . . . . . . . . . 10 0 ∈ ℤ
109 simpl 109 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
110109nn0zd 9375 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℤ)
111 fzofig 10434 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0..^𝑀) ∈ Fin)
112108, 110, 111sylancr 414 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0..^𝑀) ∈ Fin)
113 nn0z 9275 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
114113adantl 277 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
115 fzofig 10434 . . . . . . . . . 10 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0..^𝑁) ∈ Fin)
116108, 114, 115sylancr 414 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0..^𝑁) ∈ Fin)
117 hashxp 10808 . . . . . . . . 9 (((0..^𝑀) ∈ Fin ∧ (0..^𝑁) ∈ Fin) → (♯‘((0..^𝑀) × (0..^𝑁))) = ((♯‘(0..^𝑀)) · (♯‘(0..^𝑁))))
118112, 116, 117syl2anc 411 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (♯‘((0..^𝑀) × (0..^𝑁))) = ((♯‘(0..^𝑀)) · (♯‘(0..^𝑁))))
119 nn0mulcl 9214 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)
120 hashfzo0 10805 . . . . . . . . 9 ((𝑀 · 𝑁) ∈ ℕ0 → (♯‘(0..^(𝑀 · 𝑁))) = (𝑀 · 𝑁))
121119, 120syl 14 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (♯‘(0..^(𝑀 · 𝑁))) = (𝑀 · 𝑁))
122107, 118, 1213eqtr4rd 2221 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (♯‘(0..^(𝑀 · 𝑁))) = (♯‘((0..^𝑀) × (0..^𝑁))))
123119nn0zd 9375 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℤ)
124 fzofig 10434 . . . . . . . . 9 ((0 ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → (0..^(𝑀 · 𝑁)) ∈ Fin)
125108, 123, 124sylancr 414 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑀 · 𝑁)) ∈ Fin)
126 xpfi 6931 . . . . . . . . 9 (((0..^𝑀) ∈ Fin ∧ (0..^𝑁) ∈ Fin) → ((0..^𝑀) × (0..^𝑁)) ∈ Fin)
127112, 116, 126syl2anc 411 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((0..^𝑀) × (0..^𝑁)) ∈ Fin)
128 hashen 10766 . . . . . . . 8 (((0..^(𝑀 · 𝑁)) ∈ Fin ∧ ((0..^𝑀) × (0..^𝑁)) ∈ Fin) → ((♯‘(0..^(𝑀 · 𝑁))) = (♯‘((0..^𝑀) × (0..^𝑁))) ↔ (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁))))
129125, 127, 128syl2anc 411 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((♯‘(0..^(𝑀 · 𝑁))) = (♯‘((0..^𝑀) × (0..^𝑁))) ↔ (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁))))
130122, 129mpbid 147 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
131103, 104, 130syl2an 289 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
1326, 10, 131syl2anc 411 . . . 4 (𝜑 → (0..^(𝑀 · 𝑁)) ≈ ((0..^𝑀) × (0..^𝑁)))
133132, 2, 163brtr4g 4039 . . 3 (𝜑𝑆𝑇)
1346nnnn0d 9231 . . . . 5 (𝜑𝑀 ∈ ℕ0)
13510nnnn0d 9231 . . . . 5 (𝜑𝑁 ∈ ℕ0)
136134, 135, 127syl2anc 411 . . . 4 (𝜑 → ((0..^𝑀) × (0..^𝑁)) ∈ Fin)
13716, 136eqeltrid 2264 . . 3 (𝜑𝑇 ∈ Fin)
138 f1finf1o 6948 . . 3 ((𝑆𝑇𝑇 ∈ Fin) → (𝐹:𝑆1-1𝑇𝐹:𝑆1-1-onto𝑇))
139133, 137, 138syl2anc 411 . 2 (𝜑 → (𝐹:𝑆1-1𝑇𝐹:𝑆1-1-onto𝑇))
140102, 139mpbid 147 1 (𝜑𝐹:𝑆1-1-onto𝑇)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wral 2455  Vcvv 2739  cop 3597   class class class wbr 4005  cmpt 4066   × cxp 4626  wf 5214  1-1wf1 5215  1-1-ontowf1o 5217  cfv 5218  (class class class)co 5877  cen 6740  Fincfn 6742  0cc0 7813  1c1 7814   · cmul 7818   < clt 7994  cle 7995  cmin 8130  cn 8921  0cn0 9178  cz 9255  cq 9621  ..^cfzo 10144   mod cmo 10324  chash 10757  cdvds 11796   gcd cgcd 11945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-sup 6985  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946
This theorem is referenced by:  phimullem  12227
  Copyright terms: Public domain W3C validator