ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enpr2d GIF version

Theorem enpr2d 6704
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
enpr2d.1 (𝜑𝐴𝐶)
enpr2d.2 (𝜑𝐵𝐷)
enpr2d.3 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
enpr2d (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2d
StepHypRef Expression
1 enpr2d.1 . . . . 5 (𝜑𝐴𝐶)
2 ensn1g 6684 . . . . 5 (𝐴𝐶 → {𝐴} ≈ 1o)
31, 2syl 14 . . . 4 (𝜑 → {𝐴} ≈ 1o)
4 enpr2d.2 . . . . 5 (𝜑𝐵𝐷)
5 1on 6313 . . . . 5 1o ∈ On
6 en2sn 6700 . . . . 5 ((𝐵𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o})
74, 5, 6sylancl 409 . . . 4 (𝜑 → {𝐵} ≈ {1o})
8 enpr2d.3 . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98neqned 2313 . . . . 5 (𝜑𝐴𝐵)
10 disjsn2 3581 . . . . 5 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
119, 10syl 14 . . . 4 (𝜑 → ({𝐴} ∩ {𝐵}) = ∅)
125onirri 4453 . . . . . 6 ¬ 1o ∈ 1o
1312a1i 9 . . . . 5 (𝜑 → ¬ 1o ∈ 1o)
14 disjsn 3580 . . . . 5 ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o)
1513, 14sylibr 133 . . . 4 (𝜑 → (1o ∩ {1o}) = ∅)
16 unen 6703 . . . 4 ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
173, 7, 11, 15, 16syl22anc 1217 . . 3 (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
18 df-pr 3529 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
19 df-suc 4288 . . 3 suc 1o = (1o ∪ {1o})
2017, 18, 193brtr4g 3957 . 2 (𝜑 → {𝐴, 𝐵} ≈ suc 1o)
21 df-2o 6307 . 2 2o = suc 1o
2220, 21breqtrrdi 3965 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1331  wcel 1480  wne 2306  cun 3064  cin 3065  c0 3358  {csn 3522  {cpr 3523   class class class wbr 3924  Oncon0 4280  suc csuc 4282  1oc1o 6299  2oc2o 6300  cen 6625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-1o 6306  df-2o 6307  df-er 6422  df-en 6628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator