ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enpr2d GIF version

Theorem enpr2d 6876
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
enpr2d.1 (𝜑𝐴𝐶)
enpr2d.2 (𝜑𝐵𝐷)
enpr2d.3 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
enpr2d (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2d
StepHypRef Expression
1 enpr2d.1 . . . . 5 (𝜑𝐴𝐶)
2 ensn1g 6856 . . . . 5 (𝐴𝐶 → {𝐴} ≈ 1o)
31, 2syl 14 . . . 4 (𝜑 → {𝐴} ≈ 1o)
4 enpr2d.2 . . . . 5 (𝜑𝐵𝐷)
5 1on 6481 . . . . 5 1o ∈ On
6 en2sn 6872 . . . . 5 ((𝐵𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o})
74, 5, 6sylancl 413 . . . 4 (𝜑 → {𝐵} ≈ {1o})
8 enpr2d.3 . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98neqned 2374 . . . . 5 (𝜑𝐴𝐵)
10 disjsn2 3685 . . . . 5 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
119, 10syl 14 . . . 4 (𝜑 → ({𝐴} ∩ {𝐵}) = ∅)
125onirri 4579 . . . . . 6 ¬ 1o ∈ 1o
1312a1i 9 . . . . 5 (𝜑 → ¬ 1o ∈ 1o)
14 disjsn 3684 . . . . 5 ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o)
1513, 14sylibr 134 . . . 4 (𝜑 → (1o ∩ {1o}) = ∅)
16 unen 6875 . . . 4 ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
173, 7, 11, 15, 16syl22anc 1250 . . 3 (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
18 df-pr 3629 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
19 df-suc 4406 . . 3 suc 1o = (1o ∪ {1o})
2017, 18, 193brtr4g 4067 . 2 (𝜑 → {𝐴, 𝐵} ≈ suc 1o)
21 df-2o 6475 . 2 2o = suc 1o
2220, 21breqtrrdi 4075 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1364  wcel 2167  wne 2367  cun 3155  cin 3156  c0 3450  {csn 3622  {cpr 3623   class class class wbr 4033  Oncon0 4398  suc csuc 4400  1oc1o 6467  2oc2o 6468  cen 6797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800
This theorem is referenced by:  isnzr2  13740
  Copyright terms: Public domain W3C validator