ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enpr2d GIF version

Theorem enpr2d 6719
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
enpr2d.1 (𝜑𝐴𝐶)
enpr2d.2 (𝜑𝐵𝐷)
enpr2d.3 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
enpr2d (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2d
StepHypRef Expression
1 enpr2d.1 . . . . 5 (𝜑𝐴𝐶)
2 ensn1g 6699 . . . . 5 (𝐴𝐶 → {𝐴} ≈ 1o)
31, 2syl 14 . . . 4 (𝜑 → {𝐴} ≈ 1o)
4 enpr2d.2 . . . . 5 (𝜑𝐵𝐷)
5 1on 6328 . . . . 5 1o ∈ On
6 en2sn 6715 . . . . 5 ((𝐵𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o})
74, 5, 6sylancl 410 . . . 4 (𝜑 → {𝐵} ≈ {1o})
8 enpr2d.3 . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98neqned 2316 . . . . 5 (𝜑𝐴𝐵)
10 disjsn2 3594 . . . . 5 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
119, 10syl 14 . . . 4 (𝜑 → ({𝐴} ∩ {𝐵}) = ∅)
125onirri 4466 . . . . . 6 ¬ 1o ∈ 1o
1312a1i 9 . . . . 5 (𝜑 → ¬ 1o ∈ 1o)
14 disjsn 3593 . . . . 5 ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o)
1513, 14sylibr 133 . . . 4 (𝜑 → (1o ∩ {1o}) = ∅)
16 unen 6718 . . . 4 ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
173, 7, 11, 15, 16syl22anc 1218 . . 3 (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
18 df-pr 3539 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
19 df-suc 4301 . . 3 suc 1o = (1o ∪ {1o})
2017, 18, 193brtr4g 3970 . 2 (𝜑 → {𝐴, 𝐵} ≈ suc 1o)
21 df-2o 6322 . 2 2o = suc 1o
2220, 21breqtrrdi 3978 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1332  wcel 1481  wne 2309  cun 3074  cin 3075  c0 3368  {csn 3532  {cpr 3533   class class class wbr 3937  Oncon0 4293  suc csuc 4295  1oc1o 6314  2oc2o 6315  cen 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-1o 6321  df-2o 6322  df-er 6437  df-en 6643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator