| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enpr2d | GIF version | ||
| Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| enpr2d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| enpr2d.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| enpr2d.3 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| enpr2d | ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enpr2d.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | ensn1g 6856 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → {𝐴} ≈ 1o) |
| 4 | enpr2d.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 5 | 1on 6481 | . . . . 5 ⊢ 1o ∈ On | |
| 6 | en2sn 6872 | . . . . 5 ⊢ ((𝐵 ∈ 𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o}) | |
| 7 | 4, 5, 6 | sylancl 413 | . . . 4 ⊢ (𝜑 → {𝐵} ≈ {1o}) |
| 8 | enpr2d.3 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
| 9 | 8 | neqned 2374 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 10 | disjsn2 3685 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
| 11 | 9, 10 | syl 14 | . . . 4 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
| 12 | 5 | onirri 4579 | . . . . . 6 ⊢ ¬ 1o ∈ 1o |
| 13 | 12 | a1i 9 | . . . . 5 ⊢ (𝜑 → ¬ 1o ∈ 1o) |
| 14 | disjsn 3684 | . . . . 5 ⊢ ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o) | |
| 15 | 13, 14 | sylibr 134 | . . . 4 ⊢ (𝜑 → (1o ∩ {1o}) = ∅) |
| 16 | unen 6875 | . . . 4 ⊢ ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o})) | |
| 17 | 3, 7, 11, 15, 16 | syl22anc 1250 | . . 3 ⊢ (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o})) |
| 18 | df-pr 3629 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 19 | df-suc 4406 | . . 3 ⊢ suc 1o = (1o ∪ {1o}) | |
| 20 | 17, 18, 19 | 3brtr4g 4067 | . 2 ⊢ (𝜑 → {𝐴, 𝐵} ≈ suc 1o) |
| 21 | df-2o 6475 | . 2 ⊢ 2o = suc 1o | |
| 22 | 20, 21 | breqtrrdi 4075 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∪ cun 3155 ∩ cin 3156 ∅c0 3450 {csn 3622 {cpr 3623 class class class wbr 4033 Oncon0 4398 suc csuc 4400 1oc1o 6467 2oc2o 6468 ≈ cen 6797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-1o 6474 df-2o 6475 df-er 6592 df-en 6800 |
| This theorem is referenced by: isnzr2 13740 |
| Copyright terms: Public domain | W3C validator |