| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enpr2d | GIF version | ||
| Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| enpr2d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| enpr2d.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| enpr2d.3 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| enpr2d | ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enpr2d.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | ensn1g 6896 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → {𝐴} ≈ 1o) |
| 4 | enpr2d.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 5 | 1on 6516 | . . . . 5 ⊢ 1o ∈ On | |
| 6 | en2sn 6912 | . . . . 5 ⊢ ((𝐵 ∈ 𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o}) | |
| 7 | 4, 5, 6 | sylancl 413 | . . . 4 ⊢ (𝜑 → {𝐵} ≈ {1o}) |
| 8 | enpr2d.3 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
| 9 | 8 | neqned 2384 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 10 | disjsn2 3697 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
| 11 | 9, 10 | syl 14 | . . . 4 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
| 12 | 5 | onirri 4595 | . . . . . 6 ⊢ ¬ 1o ∈ 1o |
| 13 | 12 | a1i 9 | . . . . 5 ⊢ (𝜑 → ¬ 1o ∈ 1o) |
| 14 | disjsn 3696 | . . . . 5 ⊢ ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o) | |
| 15 | 13, 14 | sylibr 134 | . . . 4 ⊢ (𝜑 → (1o ∩ {1o}) = ∅) |
| 16 | unen 6915 | . . . 4 ⊢ ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o})) | |
| 17 | 3, 7, 11, 15, 16 | syl22anc 1251 | . . 3 ⊢ (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o})) |
| 18 | df-pr 3641 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 19 | df-suc 4422 | . . 3 ⊢ suc 1o = (1o ∪ {1o}) | |
| 20 | 17, 18, 19 | 3brtr4g 4081 | . 2 ⊢ (𝜑 → {𝐴, 𝐵} ≈ suc 1o) |
| 21 | df-2o 6510 | . 2 ⊢ 2o = suc 1o | |
| 22 | 20, 21 | breqtrrdi 4089 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∪ cun 3165 ∩ cin 3166 ∅c0 3461 {csn 3634 {cpr 3635 class class class wbr 4047 Oncon0 4414 suc csuc 4416 1oc1o 6502 2oc2o 6503 ≈ cen 6832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-1o 6509 df-2o 6510 df-er 6627 df-en 6835 |
| This theorem is referenced by: isnzr2 13990 |
| Copyright terms: Public domain | W3C validator |