![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enpr2d | GIF version |
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
enpr2d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
enpr2d.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
enpr2d.3 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
Ref | Expression |
---|---|
enpr2d | ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enpr2d.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
2 | ensn1g 6851 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → {𝐴} ≈ 1o) |
4 | enpr2d.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
5 | 1on 6476 | . . . . 5 ⊢ 1o ∈ On | |
6 | en2sn 6867 | . . . . 5 ⊢ ((𝐵 ∈ 𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o}) | |
7 | 4, 5, 6 | sylancl 413 | . . . 4 ⊢ (𝜑 → {𝐵} ≈ {1o}) |
8 | enpr2d.3 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
9 | 8 | neqned 2371 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
10 | disjsn2 3681 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
11 | 9, 10 | syl 14 | . . . 4 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
12 | 5 | onirri 4575 | . . . . . 6 ⊢ ¬ 1o ∈ 1o |
13 | 12 | a1i 9 | . . . . 5 ⊢ (𝜑 → ¬ 1o ∈ 1o) |
14 | disjsn 3680 | . . . . 5 ⊢ ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o) | |
15 | 13, 14 | sylibr 134 | . . . 4 ⊢ (𝜑 → (1o ∩ {1o}) = ∅) |
16 | unen 6870 | . . . 4 ⊢ ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o})) | |
17 | 3, 7, 11, 15, 16 | syl22anc 1250 | . . 3 ⊢ (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o})) |
18 | df-pr 3625 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
19 | df-suc 4402 | . . 3 ⊢ suc 1o = (1o ∪ {1o}) | |
20 | 17, 18, 19 | 3brtr4g 4063 | . 2 ⊢ (𝜑 → {𝐴, 𝐵} ≈ suc 1o) |
21 | df-2o 6470 | . 2 ⊢ 2o = suc 1o | |
22 | 20, 21 | breqtrrdi 4071 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ∪ cun 3151 ∩ cin 3152 ∅c0 3446 {csn 3618 {cpr 3619 class class class wbr 4029 Oncon0 4394 suc csuc 4396 1oc1o 6462 2oc2o 6463 ≈ cen 6792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-1o 6469 df-2o 6470 df-er 6587 df-en 6795 |
This theorem is referenced by: isnzr2 13680 |
Copyright terms: Public domain | W3C validator |