ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enpr2d GIF version

Theorem enpr2d 6918
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
enpr2d.1 (𝜑𝐴𝐶)
enpr2d.2 (𝜑𝐵𝐷)
enpr2d.3 (𝜑 → ¬ 𝐴 = 𝐵)
Assertion
Ref Expression
enpr2d (𝜑 → {𝐴, 𝐵} ≈ 2o)

Proof of Theorem enpr2d
StepHypRef Expression
1 enpr2d.1 . . . . 5 (𝜑𝐴𝐶)
2 ensn1g 6896 . . . . 5 (𝐴𝐶 → {𝐴} ≈ 1o)
31, 2syl 14 . . . 4 (𝜑 → {𝐴} ≈ 1o)
4 enpr2d.2 . . . . 5 (𝜑𝐵𝐷)
5 1on 6516 . . . . 5 1o ∈ On
6 en2sn 6912 . . . . 5 ((𝐵𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o})
74, 5, 6sylancl 413 . . . 4 (𝜑 → {𝐵} ≈ {1o})
8 enpr2d.3 . . . . . 6 (𝜑 → ¬ 𝐴 = 𝐵)
98neqned 2384 . . . . 5 (𝜑𝐴𝐵)
10 disjsn2 3697 . . . . 5 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
119, 10syl 14 . . . 4 (𝜑 → ({𝐴} ∩ {𝐵}) = ∅)
125onirri 4595 . . . . . 6 ¬ 1o ∈ 1o
1312a1i 9 . . . . 5 (𝜑 → ¬ 1o ∈ 1o)
14 disjsn 3696 . . . . 5 ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o)
1513, 14sylibr 134 . . . 4 (𝜑 → (1o ∩ {1o}) = ∅)
16 unen 6915 . . . 4 ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
173, 7, 11, 15, 16syl22anc 1251 . . 3 (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o}))
18 df-pr 3641 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
19 df-suc 4422 . . 3 suc 1o = (1o ∪ {1o})
2017, 18, 193brtr4g 4081 . 2 (𝜑 → {𝐴, 𝐵} ≈ suc 1o)
21 df-2o 6510 . 2 2o = suc 1o
2220, 21breqtrrdi 4089 1 (𝜑 → {𝐴, 𝐵} ≈ 2o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373  wcel 2177  wne 2377  cun 3165  cin 3166  c0 3461  {csn 3634  {cpr 3635   class class class wbr 4047  Oncon0 4414  suc csuc 4416  1oc1o 6502  2oc2o 6503  cen 6832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-1o 6509  df-2o 6510  df-er 6627  df-en 6835
This theorem is referenced by:  isnzr2  13990
  Copyright terms: Public domain W3C validator