| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enpr2d | GIF version | ||
| Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| enpr2d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| enpr2d.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| enpr2d.3 | ⊢ (𝜑 → ¬ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| enpr2d | ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enpr2d.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | ensn1g 6957 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1o) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → {𝐴} ≈ 1o) |
| 4 | enpr2d.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 5 | 1on 6575 | . . . . 5 ⊢ 1o ∈ On | |
| 6 | en2sn 6974 | . . . . 5 ⊢ ((𝐵 ∈ 𝐷 ∧ 1o ∈ On) → {𝐵} ≈ {1o}) | |
| 7 | 4, 5, 6 | sylancl 413 | . . . 4 ⊢ (𝜑 → {𝐵} ≈ {1o}) |
| 8 | enpr2d.3 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | |
| 9 | 8 | neqned 2407 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 10 | disjsn2 3729 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) | |
| 11 | 9, 10 | syl 14 | . . . 4 ⊢ (𝜑 → ({𝐴} ∩ {𝐵}) = ∅) |
| 12 | 5 | onirri 4635 | . . . . . 6 ⊢ ¬ 1o ∈ 1o |
| 13 | 12 | a1i 9 | . . . . 5 ⊢ (𝜑 → ¬ 1o ∈ 1o) |
| 14 | disjsn 3728 | . . . . 5 ⊢ ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o) | |
| 15 | 13, 14 | sylibr 134 | . . . 4 ⊢ (𝜑 → (1o ∩ {1o}) = ∅) |
| 16 | unen 6977 | . . . 4 ⊢ ((({𝐴} ≈ 1o ∧ {𝐵} ≈ {1o}) ∧ (({𝐴} ∩ {𝐵}) = ∅ ∧ (1o ∩ {1o}) = ∅)) → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o})) | |
| 17 | 3, 7, 11, 15, 16 | syl22anc 1272 | . . 3 ⊢ (𝜑 → ({𝐴} ∪ {𝐵}) ≈ (1o ∪ {1o})) |
| 18 | df-pr 3673 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 19 | df-suc 4462 | . . 3 ⊢ suc 1o = (1o ∪ {1o}) | |
| 20 | 17, 18, 19 | 3brtr4g 4117 | . 2 ⊢ (𝜑 → {𝐴, 𝐵} ≈ suc 1o) |
| 21 | df-2o 6569 | . 2 ⊢ 2o = suc 1o | |
| 22 | 20, 21 | breqtrrdi 4125 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ≈ 2o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∪ cun 3195 ∩ cin 3196 ∅c0 3491 {csn 3666 {cpr 3667 class class class wbr 4083 Oncon0 4454 suc csuc 4456 1oc1o 6561 2oc2o 6562 ≈ cen 6893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-1o 6568 df-2o 6569 df-er 6688 df-en 6896 |
| This theorem is referenced by: isnzr2 14156 |
| Copyright terms: Public domain | W3C validator |