Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4sqlem6 | GIF version |
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem6 | ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 7933 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ) | |
2 | 4sqlem5.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
3 | zq 9599 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
4 | 2, 3 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℚ) |
5 | 4sqlem5.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
6 | 5 | nnzd 9347 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | 2nn 9053 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
8 | znq 9597 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑀 / 2) ∈ ℚ) | |
9 | 6, 7, 8 | sylancl 413 | . . . . . . 7 ⊢ (𝜑 → (𝑀 / 2) ∈ ℚ) |
10 | qaddcl 9608 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ (𝑀 / 2) ∈ ℚ) → (𝐴 + (𝑀 / 2)) ∈ ℚ) | |
11 | 4, 9, 10 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℚ) |
12 | nnq 9606 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℚ) | |
13 | 5, 12 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℚ) |
14 | 5 | nngt0d 8936 | . . . . . 6 ⊢ (𝜑 → 0 < 𝑀) |
15 | 11, 13, 14 | modqcld 10298 | . . . . 5 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ) |
16 | qre 9598 | . . . . 5 ⊢ (((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ) | |
17 | 15, 16 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ) |
18 | 5 | nnred 8905 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
19 | 18 | rehalfcld 9138 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
20 | modqge0 10302 | . . . . 5 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ ((𝐴 + (𝑀 / 2)) mod 𝑀)) | |
21 | 11, 13, 14, 20 | syl3anc 1238 | . . . 4 ⊢ (𝜑 → 0 ≤ ((𝐴 + (𝑀 / 2)) mod 𝑀)) |
22 | 1, 17, 19, 21 | lesub1dd 8492 | . . 3 ⊢ (𝜑 → (0 − (𝑀 / 2)) ≤ (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) |
23 | df-neg 8105 | . . 3 ⊢ -(𝑀 / 2) = (0 − (𝑀 / 2)) | |
24 | 4sqlem5.4 | . . 3 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
25 | 22, 23, 24 | 3brtr4g 4032 | . 2 ⊢ (𝜑 → -(𝑀 / 2) ≤ 𝐵) |
26 | modqlt 10303 | . . . . . 6 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 + (𝑀 / 2)) mod 𝑀) < 𝑀) | |
27 | 11, 13, 14, 26 | syl3anc 1238 | . . . . 5 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) < 𝑀) |
28 | 5 | nncnd 8906 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
29 | 28 | 2halvesd 9137 | . . . . 5 ⊢ (𝜑 → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀) |
30 | 27, 29 | breqtrrd 4026 | . . . 4 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) < ((𝑀 / 2) + (𝑀 / 2))) |
31 | 17, 19, 19 | ltsubaddd 8472 | . . . 4 ⊢ (𝜑 → ((((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) < (𝑀 / 2) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) < ((𝑀 / 2) + (𝑀 / 2)))) |
32 | 30, 31 | mpbird 167 | . . 3 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) < (𝑀 / 2)) |
33 | 24, 32 | eqbrtrid 4033 | . 2 ⊢ (𝜑 → 𝐵 < (𝑀 / 2)) |
34 | 25, 33 | jca 306 | 1 ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 class class class wbr 3998 (class class class)co 5865 ℝcr 7785 0cc0 7786 + caddc 7789 < clt 7966 ≤ cle 7967 − cmin 8102 -cneg 8103 / cdiv 8602 ℕcn 8892 2c2 8943 ℤcz 9226 ℚcq 9592 mod cmo 10292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 df-inn 8893 df-2 8951 df-n0 9150 df-z 9227 df-q 9593 df-rp 9625 df-fl 10240 df-mod 10293 |
This theorem is referenced by: 4sqlem7 12349 4sqlem10 12352 |
Copyright terms: Public domain | W3C validator |