![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4sqlem6 | GIF version |
Description: Lemma for 4sq 12548. (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem6 | ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 8020 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ) | |
2 | 4sqlem5.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
3 | zq 9691 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
4 | 2, 3 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℚ) |
5 | 4sqlem5.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
6 | 5 | nnzd 9438 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | 2nn 9143 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
8 | znq 9689 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑀 / 2) ∈ ℚ) | |
9 | 6, 7, 8 | sylancl 413 | . . . . . . 7 ⊢ (𝜑 → (𝑀 / 2) ∈ ℚ) |
10 | qaddcl 9700 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ (𝑀 / 2) ∈ ℚ) → (𝐴 + (𝑀 / 2)) ∈ ℚ) | |
11 | 4, 9, 10 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℚ) |
12 | nnq 9698 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℚ) | |
13 | 5, 12 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℚ) |
14 | 5 | nngt0d 9026 | . . . . . 6 ⊢ (𝜑 → 0 < 𝑀) |
15 | 11, 13, 14 | modqcld 10399 | . . . . 5 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ) |
16 | qre 9690 | . . . . 5 ⊢ (((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ) | |
17 | 15, 16 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ) |
18 | 5 | nnred 8995 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
19 | 18 | rehalfcld 9229 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
20 | modqge0 10403 | . . . . 5 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ ((𝐴 + (𝑀 / 2)) mod 𝑀)) | |
21 | 11, 13, 14, 20 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → 0 ≤ ((𝐴 + (𝑀 / 2)) mod 𝑀)) |
22 | 1, 17, 19, 21 | lesub1dd 8580 | . . 3 ⊢ (𝜑 → (0 − (𝑀 / 2)) ≤ (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) |
23 | df-neg 8193 | . . 3 ⊢ -(𝑀 / 2) = (0 − (𝑀 / 2)) | |
24 | 4sqlem5.4 | . . 3 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
25 | 22, 23, 24 | 3brtr4g 4063 | . 2 ⊢ (𝜑 → -(𝑀 / 2) ≤ 𝐵) |
26 | modqlt 10404 | . . . . . 6 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 + (𝑀 / 2)) mod 𝑀) < 𝑀) | |
27 | 11, 13, 14, 26 | syl3anc 1249 | . . . . 5 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) < 𝑀) |
28 | 5 | nncnd 8996 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
29 | 28 | 2halvesd 9228 | . . . . 5 ⊢ (𝜑 → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀) |
30 | 27, 29 | breqtrrd 4057 | . . . 4 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) < ((𝑀 / 2) + (𝑀 / 2))) |
31 | 17, 19, 19 | ltsubaddd 8560 | . . . 4 ⊢ (𝜑 → ((((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) < (𝑀 / 2) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) < ((𝑀 / 2) + (𝑀 / 2)))) |
32 | 30, 31 | mpbird 167 | . . 3 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) < (𝑀 / 2)) |
33 | 24, 32 | eqbrtrid 4064 | . 2 ⊢ (𝜑 → 𝐵 < (𝑀 / 2)) |
34 | 25, 33 | jca 306 | 1 ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℝcr 7871 0cc0 7872 + caddc 7875 < clt 8054 ≤ cle 8055 − cmin 8190 -cneg 8191 / cdiv 8691 ℕcn 8982 2c2 9033 ℤcz 9317 ℚcq 9684 mod cmo 10393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 df-q 9685 df-rp 9720 df-fl 10339 df-mod 10394 |
This theorem is referenced by: 4sqlem7 12522 4sqlem10 12525 |
Copyright terms: Public domain | W3C validator |