![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4sqlem6 | GIF version |
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem6 | ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 7958 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ) | |
2 | 4sqlem5.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
3 | zq 9626 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
4 | 2, 3 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℚ) |
5 | 4sqlem5.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
6 | 5 | nnzd 9374 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | 2nn 9080 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
8 | znq 9624 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑀 / 2) ∈ ℚ) | |
9 | 6, 7, 8 | sylancl 413 | . . . . . . 7 ⊢ (𝜑 → (𝑀 / 2) ∈ ℚ) |
10 | qaddcl 9635 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ (𝑀 / 2) ∈ ℚ) → (𝐴 + (𝑀 / 2)) ∈ ℚ) | |
11 | 4, 9, 10 | syl2anc 411 | . . . . . 6 ⊢ (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℚ) |
12 | nnq 9633 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℚ) | |
13 | 5, 12 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℚ) |
14 | 5 | nngt0d 8963 | . . . . . 6 ⊢ (𝜑 → 0 < 𝑀) |
15 | 11, 13, 14 | modqcld 10328 | . . . . 5 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ) |
16 | qre 9625 | . . . . 5 ⊢ (((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ) | |
17 | 15, 16 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ) |
18 | 5 | nnred 8932 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
19 | 18 | rehalfcld 9165 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
20 | modqge0 10332 | . . . . 5 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ ((𝐴 + (𝑀 / 2)) mod 𝑀)) | |
21 | 11, 13, 14, 20 | syl3anc 1238 | . . . 4 ⊢ (𝜑 → 0 ≤ ((𝐴 + (𝑀 / 2)) mod 𝑀)) |
22 | 1, 17, 19, 21 | lesub1dd 8518 | . . 3 ⊢ (𝜑 → (0 − (𝑀 / 2)) ≤ (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) |
23 | df-neg 8131 | . . 3 ⊢ -(𝑀 / 2) = (0 − (𝑀 / 2)) | |
24 | 4sqlem5.4 | . . 3 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
25 | 22, 23, 24 | 3brtr4g 4038 | . 2 ⊢ (𝜑 → -(𝑀 / 2) ≤ 𝐵) |
26 | modqlt 10333 | . . . . . 6 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 + (𝑀 / 2)) mod 𝑀) < 𝑀) | |
27 | 11, 13, 14, 26 | syl3anc 1238 | . . . . 5 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) < 𝑀) |
28 | 5 | nncnd 8933 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
29 | 28 | 2halvesd 9164 | . . . . 5 ⊢ (𝜑 → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀) |
30 | 27, 29 | breqtrrd 4032 | . . . 4 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) < ((𝑀 / 2) + (𝑀 / 2))) |
31 | 17, 19, 19 | ltsubaddd 8498 | . . . 4 ⊢ (𝜑 → ((((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) < (𝑀 / 2) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) < ((𝑀 / 2) + (𝑀 / 2)))) |
32 | 30, 31 | mpbird 167 | . . 3 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) < (𝑀 / 2)) |
33 | 24, 32 | eqbrtrid 4039 | . 2 ⊢ (𝜑 → 𝐵 < (𝑀 / 2)) |
34 | 25, 33 | jca 306 | 1 ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 class class class wbr 4004 (class class class)co 5875 ℝcr 7810 0cc0 7811 + caddc 7814 < clt 7992 ≤ cle 7993 − cmin 8128 -cneg 8129 / cdiv 8629 ℕcn 8919 2c2 8970 ℤcz 9253 ℚcq 9619 mod cmo 10322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-mulrcl 7910 ax-addcom 7911 ax-mulcom 7912 ax-addass 7913 ax-mulass 7914 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-1rid 7918 ax-0id 7919 ax-rnegex 7920 ax-precex 7921 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 ax-pre-mulgt0 7928 ax-pre-mulext 7929 ax-arch 7930 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-po 4297 df-iso 4298 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-reap 8532 df-ap 8539 df-div 8630 df-inn 8920 df-2 8978 df-n0 9177 df-z 9254 df-q 9620 df-rp 9654 df-fl 10270 df-mod 10323 |
This theorem is referenced by: 4sqlem7 12382 4sqlem10 12385 |
Copyright terms: Public domain | W3C validator |