Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4sqlem6 | GIF version |
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem6 | ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 7896 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ) | |
2 | 4sqlem5.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
3 | zq 9560 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
4 | 2, 3 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℚ) |
5 | 4sqlem5.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
6 | 5 | nnzd 9308 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | 2nn 9014 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
8 | znq 9558 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑀 / 2) ∈ ℚ) | |
9 | 6, 7, 8 | sylancl 410 | . . . . . . 7 ⊢ (𝜑 → (𝑀 / 2) ∈ ℚ) |
10 | qaddcl 9569 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ (𝑀 / 2) ∈ ℚ) → (𝐴 + (𝑀 / 2)) ∈ ℚ) | |
11 | 4, 9, 10 | syl2anc 409 | . . . . . 6 ⊢ (𝜑 → (𝐴 + (𝑀 / 2)) ∈ ℚ) |
12 | nnq 9567 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℚ) | |
13 | 5, 12 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℚ) |
14 | 5 | nngt0d 8897 | . . . . . 6 ⊢ (𝜑 → 0 < 𝑀) |
15 | 11, 13, 14 | modqcld 10259 | . . . . 5 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ) |
16 | qre 9559 | . . . . 5 ⊢ (((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℚ → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ) | |
17 | 15, 16 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) ∈ ℝ) |
18 | 5 | nnred 8866 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
19 | 18 | rehalfcld 9099 | . . . 4 ⊢ (𝜑 → (𝑀 / 2) ∈ ℝ) |
20 | modqge0 10263 | . . . . 5 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → 0 ≤ ((𝐴 + (𝑀 / 2)) mod 𝑀)) | |
21 | 11, 13, 14, 20 | syl3anc 1228 | . . . 4 ⊢ (𝜑 → 0 ≤ ((𝐴 + (𝑀 / 2)) mod 𝑀)) |
22 | 1, 17, 19, 21 | lesub1dd 8455 | . . 3 ⊢ (𝜑 → (0 − (𝑀 / 2)) ≤ (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))) |
23 | df-neg 8068 | . . 3 ⊢ -(𝑀 / 2) = (0 − (𝑀 / 2)) | |
24 | 4sqlem5.4 | . . 3 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
25 | 22, 23, 24 | 3brtr4g 4015 | . 2 ⊢ (𝜑 → -(𝑀 / 2) ≤ 𝐵) |
26 | modqlt 10264 | . . . . . 6 ⊢ (((𝐴 + (𝑀 / 2)) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 + (𝑀 / 2)) mod 𝑀) < 𝑀) | |
27 | 11, 13, 14, 26 | syl3anc 1228 | . . . . 5 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) < 𝑀) |
28 | 5 | nncnd 8867 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
29 | 28 | 2halvesd 9098 | . . . . 5 ⊢ (𝜑 → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀) |
30 | 27, 29 | breqtrrd 4009 | . . . 4 ⊢ (𝜑 → ((𝐴 + (𝑀 / 2)) mod 𝑀) < ((𝑀 / 2) + (𝑀 / 2))) |
31 | 17, 19, 19 | ltsubaddd 8435 | . . . 4 ⊢ (𝜑 → ((((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) < (𝑀 / 2) ↔ ((𝐴 + (𝑀 / 2)) mod 𝑀) < ((𝑀 / 2) + (𝑀 / 2)))) |
32 | 30, 31 | mpbird 166 | . . 3 ⊢ (𝜑 → (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) < (𝑀 / 2)) |
33 | 24, 32 | eqbrtrid 4016 | . 2 ⊢ (𝜑 → 𝐵 < (𝑀 / 2)) |
34 | 25, 33 | jca 304 | 1 ⊢ (𝜑 → (-(𝑀 / 2) ≤ 𝐵 ∧ 𝐵 < (𝑀 / 2))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 class class class wbr 3981 (class class class)co 5841 ℝcr 7748 0cc0 7749 + caddc 7752 < clt 7929 ≤ cle 7930 − cmin 8065 -cneg 8066 / cdiv 8564 ℕcn 8853 2c2 8904 ℤcz 9187 ℚcq 9553 mod cmo 10253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 ax-arch 7868 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-po 4273 df-iso 4274 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-2 8912 df-n0 9111 df-z 9188 df-q 9554 df-rp 9586 df-fl 10201 df-mod 10254 |
This theorem is referenced by: 4sqlem7 12310 4sqlem10 12313 |
Copyright terms: Public domain | W3C validator |