Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpo GIF version

Theorem trilpo 15253
Description: Real number trichotomy implies the Limited Principle of Omniscience (LPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 15251 (which means the sequence contains a zero), trilpolemeq1 15250 (which means the sequence is all ones), and trilpolemgt1 15249 (which is not possible).

Equivalent ways to state real number trichotomy (sometimes called "analytic LPO") include decidability of real number apartness (see triap 15239) or that the real numbers are a discrete field (see trirec0 15254).

LPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qtri3or 10273 for real numbers. (Contributed by Jim Kingdon, 23-Aug-2023.)

Assertion
Ref Expression
trilpo (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ω ∈ Omni)
Distinct variable group:   𝑥,𝑦

Proof of Theorem trilpo
Dummy variables 𝑓 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6696 . . . . . 6 (𝑓 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑓:ℕ⟶{0, 1})
21adantl 277 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑓:ℕ⟶{0, 1})
3 oveq2 5904 . . . . . . . 8 (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗))
43oveq2d 5912 . . . . . . 7 (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗)))
5 fveq2 5534 . . . . . . 7 (𝑖 = 𝑗 → (𝑓𝑖) = (𝑓𝑗))
64, 5oveq12d 5914 . . . . . 6 (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑓𝑖)) = ((1 / (2↑𝑗)) · (𝑓𝑗)))
76cbvsumv 11401 . . . . 5 Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑓𝑗))
82, 7trilpolemcl 15247 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ∈ ℝ)
9 1red 8002 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 1 ∈ ℝ)
10 simpl 109 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
11 breq1 4021 . . . . . . . 8 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → (𝑥 < 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 𝑦))
12 eqeq1 2196 . . . . . . . 8 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → (𝑥 = 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦))
13 breq2 4022 . . . . . . . 8 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → (𝑦 < 𝑥𝑦 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖))))
1411, 12, 133orbi123d 1322 . . . . . . 7 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 𝑦 ∨ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦𝑦 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)))))
15 breq2 4022 . . . . . . . 8 (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 1))
16 eqeq2 2199 . . . . . . . 8 (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1))
17 breq1 4021 . . . . . . . 8 (𝑦 = 1 → (𝑦 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ↔ 1 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖))))
1815, 16, 173orbi123d 1322 . . . . . . 7 (𝑦 = 1 → ((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 𝑦 ∨ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦𝑦 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖))) ↔ (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 1 ∨ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1 ∨ 1 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)))))
1914, 18rspc2va 2870 . . . . . 6 (((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 1 ∨ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1 ∨ 1 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖))))
208, 9, 10, 19syl21anc 1248 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 1 ∨ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1 ∨ 1 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖))))
212, 7, 20trilpolemres 15252 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (∃𝑧 ∈ ℕ (𝑓𝑧) = 0 ∨ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1))
2221ralrimiva 2563 . . 3 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(∃𝑧 ∈ ℕ (𝑓𝑧) = 0 ∨ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1))
23 nnex 8955 . . . 4 ℕ ∈ V
24 isomninn 15241 . . . 4 (ℕ ∈ V → (ℕ ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(∃𝑧 ∈ ℕ (𝑓𝑧) = 0 ∨ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1)))
2523, 24ax-mp 5 . . 3 (ℕ ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(∃𝑧 ∈ ℕ (𝑓𝑧) = 0 ∨ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1))
2622, 25sylibr 134 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ℕ ∈ Omni)
27 nnenom 10465 . . 3 ℕ ≈ ω
28 enomni 7167 . . 3 (ℕ ≈ ω → (ℕ ∈ Omni ↔ ω ∈ Omni))
2927, 28ax-mp 5 . 2 (ℕ ∈ Omni ↔ ω ∈ Omni)
3026, 29sylib 122 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ω ∈ Omni)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3o 979   = wceq 1364  wcel 2160  wral 2468  wrex 2469  Vcvv 2752  {cpr 3608   class class class wbr 4018  ωcom 4607  wf 5231  cfv 5235  (class class class)co 5896  𝑚 cmap 6674  cen 6764  Omnicomni 7162  cr 7840  0cc0 7841  1c1 7842   · cmul 7846   < clt 8022   / cdiv 8659  cn 8949  2c2 9000  cexp 10550  Σcsu 11393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-frec 6416  df-1o 6441  df-2o 6442  df-oadd 6445  df-er 6559  df-map 6676  df-en 6767  df-dom 6768  df-fin 6769  df-omni 7163  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-ico 9924  df-fz 10039  df-fzo 10173  df-seqfrec 10477  df-exp 10551  df-ihash 10788  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-clim 11319  df-sumdc 11394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator