Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpo GIF version

Theorem trilpo 16117
Description: Real number trichotomy implies the Limited Principle of Omniscience (LPO). We expect that we'd need some form of countable choice to prove the converse.

Here's the outline of the proof. Given an infinite sequence F of zeroes and ones, we need to show the sequence contains a zero or it is all ones. Construct a real number A whose representation in base two consists of a zero, a decimal point, and then the numbers of the sequence. Compare it with one using trichotomy. The three cases from trichotomy are trilpolemlt1 16115 (which means the sequence contains a zero), trilpolemeq1 16114 (which means the sequence is all ones), and trilpolemgt1 16113 (which is not possible).

Equivalent ways to state real number trichotomy (sometimes called "analytic LPO") include decidability of real number apartness (see triap 16103) or that the real numbers are a discrete field (see trirec0 16118).

LPO is known to not be provable in IZF (and most constructive foundations), so this theorem establishes that we will be unable to prove an analogue to qtri3or 10400 for real numbers. (Contributed by Jim Kingdon, 23-Aug-2023.)

Assertion
Ref Expression
trilpo (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ω ∈ Omni)
Distinct variable group:   𝑥,𝑦

Proof of Theorem trilpo
Dummy variables 𝑓 𝑖 𝑗 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6769 . . . . . 6 (𝑓 ∈ ({0, 1} ↑𝑚 ℕ) → 𝑓:ℕ⟶{0, 1})
21adantl 277 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 𝑓:ℕ⟶{0, 1})
3 oveq2 5964 . . . . . . . 8 (𝑖 = 𝑗 → (2↑𝑖) = (2↑𝑗))
43oveq2d 5972 . . . . . . 7 (𝑖 = 𝑗 → (1 / (2↑𝑖)) = (1 / (2↑𝑗)))
5 fveq2 5588 . . . . . . 7 (𝑖 = 𝑗 → (𝑓𝑖) = (𝑓𝑗))
64, 5oveq12d 5974 . . . . . 6 (𝑖 = 𝑗 → ((1 / (2↑𝑖)) · (𝑓𝑖)) = ((1 / (2↑𝑗)) · (𝑓𝑗)))
76cbvsumv 11742 . . . . 5 Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = Σ𝑗 ∈ ℕ ((1 / (2↑𝑗)) · (𝑓𝑗))
82, 7trilpolemcl 16111 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ∈ ℝ)
9 1red 8102 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → 1 ∈ ℝ)
10 simpl 109 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
11 breq1 4053 . . . . . . . 8 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → (𝑥 < 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 𝑦))
12 eqeq1 2213 . . . . . . . 8 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → (𝑥 = 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦))
13 breq2 4054 . . . . . . . 8 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → (𝑦 < 𝑥𝑦 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖))))
1411, 12, 133orbi123d 1324 . . . . . . 7 (𝑥 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 𝑦 ∨ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦𝑦 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)))))
15 breq2 4054 . . . . . . . 8 (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 1))
16 eqeq2 2216 . . . . . . . 8 (𝑦 = 1 → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦 ↔ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1))
17 breq1 4053 . . . . . . . 8 (𝑦 = 1 → (𝑦 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ↔ 1 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖))))
1815, 16, 173orbi123d 1324 . . . . . . 7 (𝑦 = 1 → ((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 𝑦 ∨ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 𝑦𝑦 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖))) ↔ (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 1 ∨ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1 ∨ 1 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)))))
1914, 18rspc2va 2895 . . . . . 6 (((Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 1 ∨ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1 ∨ 1 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖))))
208, 9, 10, 19syl21anc 1249 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) < 1 ∨ Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖)) = 1 ∨ 1 < Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝑓𝑖))))
212, 7, 20trilpolemres 16116 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑓 ∈ ({0, 1} ↑𝑚 ℕ)) → (∃𝑧 ∈ ℕ (𝑓𝑧) = 0 ∨ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1))
2221ralrimiva 2580 . . 3 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(∃𝑧 ∈ ℕ (𝑓𝑧) = 0 ∨ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1))
23 nnex 9057 . . . 4 ℕ ∈ V
24 isomninn 16105 . . . 4 (ℕ ∈ V → (ℕ ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(∃𝑧 ∈ ℕ (𝑓𝑧) = 0 ∨ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1)))
2523, 24ax-mp 5 . . 3 (ℕ ∈ Omni ↔ ∀𝑓 ∈ ({0, 1} ↑𝑚 ℕ)(∃𝑧 ∈ ℕ (𝑓𝑧) = 0 ∨ ∀𝑧 ∈ ℕ (𝑓𝑧) = 1))
2622, 25sylibr 134 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ℕ ∈ Omni)
27 nnenom 10596 . . 3 ℕ ≈ ω
28 enomni 7255 . . 3 (ℕ ≈ ω → (ℕ ∈ Omni ↔ ω ∈ Omni))
2927, 28ax-mp 5 . 2 (ℕ ∈ Omni ↔ ω ∈ Omni)
3026, 29sylib 122 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ω ∈ Omni)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  w3o 980   = wceq 1373  wcel 2177  wral 2485  wrex 2486  Vcvv 2773  {cpr 3638   class class class wbr 4050  ωcom 4645  wf 5275  cfv 5279  (class class class)co 5956  𝑚 cmap 6747  cen 6837  Omnicomni 7250  cr 7939  0cc0 7940  1c1 7941   · cmul 7945   < clt 8122   / cdiv 8760  cn 9051  2c2 9102  cexp 10700  Σcsu 11734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059  ax-caucvg 8060
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-isom 5288  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-irdg 6468  df-frec 6489  df-1o 6514  df-2o 6515  df-oadd 6518  df-er 6632  df-map 6749  df-en 6840  df-dom 6841  df-fin 6842  df-omni 7251  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-n0 9311  df-z 9388  df-uz 9664  df-q 9756  df-rp 9791  df-ico 10031  df-fz 10146  df-fzo 10280  df-seqfrec 10610  df-exp 10701  df-ihash 10938  df-cj 11223  df-re 11224  df-im 11225  df-rsqrt 11379  df-abs 11380  df-clim 11660  df-sumdc 11735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator