ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitri3or GIF version

Theorem pitri3or 7505
Description: Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.)
Assertion
Ref Expression
pitri3or ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴 = 𝐵𝐵 <N 𝐴))

Proof of Theorem pitri3or
StepHypRef Expression
1 pinn 7492 . . 3 (𝐴N𝐴 ∈ ω)
2 pinn 7492 . . 3 (𝐵N𝐵 ∈ ω)
3 nntri3or 6637 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
41, 2, 3syl2an 289 . 2 ((𝐴N𝐵N) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
5 ltpiord 7502 . . 3 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
6 biidd 172 . . 3 ((𝐴N𝐵N) → (𝐴 = 𝐵𝐴 = 𝐵))
7 ltpiord 7502 . . . 4 ((𝐵N𝐴N) → (𝐵 <N 𝐴𝐵𝐴))
87ancoms 268 . . 3 ((𝐴N𝐵N) → (𝐵 <N 𝐴𝐵𝐴))
95, 6, 83orbi123d 1345 . 2 ((𝐴N𝐵N) → ((𝐴 <N 𝐵𝐴 = 𝐵𝐵 <N 𝐴) ↔ (𝐴𝐵𝐴 = 𝐵𝐵𝐴)))
104, 9mpbird 167 1 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴 = 𝐵𝐵 <N 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3o 1001   = wceq 1395  wcel 2200   class class class wbr 4082  ωcom 4681  Ncnpi 7455   <N clti 7458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-eprel 4379  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-ni 7487  df-lti 7490
This theorem is referenced by:  nqtri3or  7579  caucvgprlemnkj  7849  caucvgprlemnbj  7850  caucvgprprlemnkj  7875  caucvgprprlemnbj  7876  caucvgsr  7985
  Copyright terms: Public domain W3C validator