| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pitri3or | GIF version | ||
| Description: Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.) |
| Ref | Expression |
|---|---|
| pitri3or | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 <N 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 7404 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | pinn 7404 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 3 | nntri3or 6569 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
| 5 | ltpiord 7414 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | biidd 172 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 7 | ltpiord 7414 | . . . 4 ⊢ ((𝐵 ∈ N ∧ 𝐴 ∈ N) → (𝐵 <N 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
| 8 | 7 | ancoms 268 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐵 <N 𝐴 ↔ 𝐵 ∈ 𝐴)) |
| 9 | 5, 6, 8 | 3orbi123d 1323 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 <N 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 <N 𝐴) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
| 10 | 4, 9 | mpbird 167 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 <N 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ w3o 979 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 ωcom 4636 Ncnpi 7367 <N clti 7370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-tr 4142 df-eprel 4334 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-ni 7399 df-lti 7402 |
| This theorem is referenced by: nqtri3or 7491 caucvgprlemnkj 7761 caucvgprlemnbj 7762 caucvgprprlemnkj 7787 caucvgprprlemnbj 7788 caucvgsr 7897 |
| Copyright terms: Public domain | W3C validator |