Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pitri3or | GIF version |
Description: Trichotomy for positive integers. (Contributed by Jim Kingdon, 21-Sep-2019.) |
Ref | Expression |
---|---|
pitri3or | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 <N 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 7250 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 7250 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | nntri3or 6461 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
4 | 1, 2, 3 | syl2an 287 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) |
5 | ltpiord 7260 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | biidd 171 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 = 𝐵 ↔ 𝐴 = 𝐵)) | |
7 | ltpiord 7260 | . . . 4 ⊢ ((𝐵 ∈ N ∧ 𝐴 ∈ N) → (𝐵 <N 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
8 | 7 | ancoms 266 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐵 <N 𝐴 ↔ 𝐵 ∈ 𝐴)) |
9 | 5, 6, 8 | 3orbi123d 1301 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 <N 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 <N 𝐴) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴))) |
10 | 4, 9 | mpbird 166 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 <N 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ w3o 967 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ωcom 4567 Ncnpi 7213 <N clti 7216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-tr 4081 df-eprel 4267 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-ni 7245 df-lti 7248 |
This theorem is referenced by: nqtri3or 7337 caucvgprlemnkj 7607 caucvgprlemnbj 7608 caucvgprprlemnkj 7633 caucvgprprlemnbj 7634 caucvgsr 7743 |
Copyright terms: Public domain | W3C validator |