Proof of Theorem wetriext
| Step | Hyp | Ref
| Expression |
| 1 | | breq1 4037 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝑧𝑅𝐵 ↔ 𝐵𝑅𝐵)) |
| 2 | | breq1 4037 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝑧𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 3 | 1, 2 | bibi12d 235 |
. . . . 5
⊢ (𝑧 = 𝐵 → ((𝑧𝑅𝐵 ↔ 𝑧𝑅𝐶) ↔ (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶))) |
| 4 | | wetriext.ext |
. . . . 5
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 (𝑧𝑅𝐵 ↔ 𝑧𝑅𝐶)) |
| 5 | | wetriext.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| 6 | 3, 4, 5 | rspcdva 2873 |
. . . 4
⊢ (𝜑 → (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶)) |
| 7 | 6 | biimpar 297 |
. . 3
⊢ ((𝜑 ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐵) |
| 8 | | wetriext.we |
. . . . . 6
⊢ (𝜑 → 𝑅 We 𝐴) |
| 9 | | wefr 4394 |
. . . . . 6
⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
| 10 | 8, 9 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑅 Fr 𝐴) |
| 11 | | wetriext.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 12 | | frirrg 4386 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
| 13 | 10, 11, 5, 12 | syl3anc 1249 |
. . . 4
⊢ (𝜑 → ¬ 𝐵𝑅𝐵) |
| 14 | 13 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐵) |
| 15 | 7, 14 | pm2.21dd 621 |
. 2
⊢ ((𝜑 ∧ 𝐵𝑅𝐶) → 𝐵 = 𝐶) |
| 16 | | simpr 110 |
. 2
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) |
| 17 | | breq1 4037 |
. . . . . 6
⊢ (𝑧 = 𝐶 → (𝑧𝑅𝐵 ↔ 𝐶𝑅𝐵)) |
| 18 | | breq1 4037 |
. . . . . 6
⊢ (𝑧 = 𝐶 → (𝑧𝑅𝐶 ↔ 𝐶𝑅𝐶)) |
| 19 | 17, 18 | bibi12d 235 |
. . . . 5
⊢ (𝑧 = 𝐶 → ((𝑧𝑅𝐵 ↔ 𝑧𝑅𝐶) ↔ (𝐶𝑅𝐵 ↔ 𝐶𝑅𝐶))) |
| 20 | | wetriext.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| 21 | 19, 4, 20 | rspcdva 2873 |
. . . 4
⊢ (𝜑 → (𝐶𝑅𝐵 ↔ 𝐶𝑅𝐶)) |
| 22 | 21 | biimpa 296 |
. . 3
⊢ ((𝜑 ∧ 𝐶𝑅𝐵) → 𝐶𝑅𝐶) |
| 23 | | frirrg 4386 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶𝑅𝐶) |
| 24 | 10, 11, 20, 23 | syl3anc 1249 |
. . . 4
⊢ (𝜑 → ¬ 𝐶𝑅𝐶) |
| 25 | 24 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝐶𝑅𝐵) → ¬ 𝐶𝑅𝐶) |
| 26 | 22, 25 | pm2.21dd 621 |
. 2
⊢ ((𝜑 ∧ 𝐶𝑅𝐵) → 𝐵 = 𝐶) |
| 27 | | wetriext.tri |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎)) |
| 28 | | breq1 4037 |
. . . . . 6
⊢ (𝑎 = 𝐵 → (𝑎𝑅𝑏 ↔ 𝐵𝑅𝑏)) |
| 29 | | eqeq1 2203 |
. . . . . 6
⊢ (𝑎 = 𝐵 → (𝑎 = 𝑏 ↔ 𝐵 = 𝑏)) |
| 30 | | breq2 4038 |
. . . . . 6
⊢ (𝑎 = 𝐵 → (𝑏𝑅𝑎 ↔ 𝑏𝑅𝐵)) |
| 31 | 28, 29, 30 | 3orbi123d 1322 |
. . . . 5
⊢ (𝑎 = 𝐵 → ((𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) ↔ (𝐵𝑅𝑏 ∨ 𝐵 = 𝑏 ∨ 𝑏𝑅𝐵))) |
| 32 | | breq2 4038 |
. . . . . 6
⊢ (𝑏 = 𝐶 → (𝐵𝑅𝑏 ↔ 𝐵𝑅𝐶)) |
| 33 | | eqeq2 2206 |
. . . . . 6
⊢ (𝑏 = 𝐶 → (𝐵 = 𝑏 ↔ 𝐵 = 𝐶)) |
| 34 | | breq1 4037 |
. . . . . 6
⊢ (𝑏 = 𝐶 → (𝑏𝑅𝐵 ↔ 𝐶𝑅𝐵)) |
| 35 | 32, 33, 34 | 3orbi123d 1322 |
. . . . 5
⊢ (𝑏 = 𝐶 → ((𝐵𝑅𝑏 ∨ 𝐵 = 𝑏 ∨ 𝑏𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| 36 | 31, 35 | rspc2v 2881 |
. . . 4
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| 37 | 5, 20, 36 | syl2anc 411 |
. . 3
⊢ (𝜑 → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
| 38 | 27, 37 | mpd 13 |
. 2
⊢ (𝜑 → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) |
| 39 | 15, 16, 26, 38 | mpjao3dan 1318 |
1
⊢ (𝜑 → 𝐵 = 𝐶) |