Proof of Theorem wetriext
Step | Hyp | Ref
| Expression |
1 | | breq1 3985 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝑧𝑅𝐵 ↔ 𝐵𝑅𝐵)) |
2 | | breq1 3985 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝑧𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
3 | 1, 2 | bibi12d 234 |
. . . . 5
⊢ (𝑧 = 𝐵 → ((𝑧𝑅𝐵 ↔ 𝑧𝑅𝐶) ↔ (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶))) |
4 | | wetriext.ext |
. . . . 5
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 (𝑧𝑅𝐵 ↔ 𝑧𝑅𝐶)) |
5 | | wetriext.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
6 | 3, 4, 5 | rspcdva 2835 |
. . . 4
⊢ (𝜑 → (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶)) |
7 | 6 | biimpar 295 |
. . 3
⊢ ((𝜑 ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐵) |
8 | | wetriext.we |
. . . . . 6
⊢ (𝜑 → 𝑅 We 𝐴) |
9 | | wefr 4336 |
. . . . . 6
⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) |
10 | 8, 9 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑅 Fr 𝐴) |
11 | | wetriext.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
12 | | frirrg 4328 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) |
13 | 10, 11, 5, 12 | syl3anc 1228 |
. . . 4
⊢ (𝜑 → ¬ 𝐵𝑅𝐵) |
14 | 13 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ 𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐵) |
15 | 7, 14 | pm2.21dd 610 |
. 2
⊢ ((𝜑 ∧ 𝐵𝑅𝐶) → 𝐵 = 𝐶) |
16 | | simpr 109 |
. 2
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) |
17 | | breq1 3985 |
. . . . . 6
⊢ (𝑧 = 𝐶 → (𝑧𝑅𝐵 ↔ 𝐶𝑅𝐵)) |
18 | | breq1 3985 |
. . . . . 6
⊢ (𝑧 = 𝐶 → (𝑧𝑅𝐶 ↔ 𝐶𝑅𝐶)) |
19 | 17, 18 | bibi12d 234 |
. . . . 5
⊢ (𝑧 = 𝐶 → ((𝑧𝑅𝐵 ↔ 𝑧𝑅𝐶) ↔ (𝐶𝑅𝐵 ↔ 𝐶𝑅𝐶))) |
20 | | wetriext.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝐴) |
21 | 19, 4, 20 | rspcdva 2835 |
. . . 4
⊢ (𝜑 → (𝐶𝑅𝐵 ↔ 𝐶𝑅𝐶)) |
22 | 21 | biimpa 294 |
. . 3
⊢ ((𝜑 ∧ 𝐶𝑅𝐵) → 𝐶𝑅𝐶) |
23 | | frirrg 4328 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶𝑅𝐶) |
24 | 10, 11, 20, 23 | syl3anc 1228 |
. . . 4
⊢ (𝜑 → ¬ 𝐶𝑅𝐶) |
25 | 24 | adantr 274 |
. . 3
⊢ ((𝜑 ∧ 𝐶𝑅𝐵) → ¬ 𝐶𝑅𝐶) |
26 | 22, 25 | pm2.21dd 610 |
. 2
⊢ ((𝜑 ∧ 𝐶𝑅𝐵) → 𝐵 = 𝐶) |
27 | | wetriext.tri |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎)) |
28 | | breq1 3985 |
. . . . . 6
⊢ (𝑎 = 𝐵 → (𝑎𝑅𝑏 ↔ 𝐵𝑅𝑏)) |
29 | | eqeq1 2172 |
. . . . . 6
⊢ (𝑎 = 𝐵 → (𝑎 = 𝑏 ↔ 𝐵 = 𝑏)) |
30 | | breq2 3986 |
. . . . . 6
⊢ (𝑎 = 𝐵 → (𝑏𝑅𝑎 ↔ 𝑏𝑅𝐵)) |
31 | 28, 29, 30 | 3orbi123d 1301 |
. . . . 5
⊢ (𝑎 = 𝐵 → ((𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) ↔ (𝐵𝑅𝑏 ∨ 𝐵 = 𝑏 ∨ 𝑏𝑅𝐵))) |
32 | | breq2 3986 |
. . . . . 6
⊢ (𝑏 = 𝐶 → (𝐵𝑅𝑏 ↔ 𝐵𝑅𝐶)) |
33 | | eqeq2 2175 |
. . . . . 6
⊢ (𝑏 = 𝐶 → (𝐵 = 𝑏 ↔ 𝐵 = 𝐶)) |
34 | | breq1 3985 |
. . . . . 6
⊢ (𝑏 = 𝐶 → (𝑏𝑅𝐵 ↔ 𝐶𝑅𝐵)) |
35 | 32, 33, 34 | 3orbi123d 1301 |
. . . . 5
⊢ (𝑏 = 𝐶 → ((𝐵𝑅𝑏 ∨ 𝐵 = 𝑏 ∨ 𝑏𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
36 | 31, 35 | rspc2v 2843 |
. . . 4
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
37 | 5, 20, 36 | syl2anc 409 |
. . 3
⊢ (𝜑 → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) |
38 | 27, 37 | mpd 13 |
. 2
⊢ (𝜑 → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) |
39 | 15, 16, 26, 38 | mpjao3dan 1297 |
1
⊢ (𝜑 → 𝐵 = 𝐶) |