Proof of Theorem wetriext
| Step | Hyp | Ref
 | Expression | 
| 1 |   | breq1 4036 | 
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝑧𝑅𝐵 ↔ 𝐵𝑅𝐵)) | 
| 2 |   | breq1 4036 | 
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝑧𝑅𝐶 ↔ 𝐵𝑅𝐶)) | 
| 3 | 1, 2 | bibi12d 235 | 
. . . . 5
⊢ (𝑧 = 𝐵 → ((𝑧𝑅𝐵 ↔ 𝑧𝑅𝐶) ↔ (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶))) | 
| 4 |   | wetriext.ext | 
. . . . 5
⊢ (𝜑 → ∀𝑧 ∈ 𝐴 (𝑧𝑅𝐵 ↔ 𝑧𝑅𝐶)) | 
| 5 |   | wetriext.b | 
. . . . 5
⊢ (𝜑 → 𝐵 ∈ 𝐴) | 
| 6 | 3, 4, 5 | rspcdva 2873 | 
. . . 4
⊢ (𝜑 → (𝐵𝑅𝐵 ↔ 𝐵𝑅𝐶)) | 
| 7 | 6 | biimpar 297 | 
. . 3
⊢ ((𝜑 ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐵) | 
| 8 |   | wetriext.we | 
. . . . . 6
⊢ (𝜑 → 𝑅 We 𝐴) | 
| 9 |   | wefr 4393 | 
. . . . . 6
⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | 
| 10 | 8, 9 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝑅 Fr 𝐴) | 
| 11 |   | wetriext.a | 
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 12 |   | frirrg 4385 | 
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵𝑅𝐵) | 
| 13 | 10, 11, 5, 12 | syl3anc 1249 | 
. . . 4
⊢ (𝜑 → ¬ 𝐵𝑅𝐵) | 
| 14 | 13 | adantr 276 | 
. . 3
⊢ ((𝜑 ∧ 𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐵) | 
| 15 | 7, 14 | pm2.21dd 621 | 
. 2
⊢ ((𝜑 ∧ 𝐵𝑅𝐶) → 𝐵 = 𝐶) | 
| 16 |   | simpr 110 | 
. 2
⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | 
| 17 |   | breq1 4036 | 
. . . . . 6
⊢ (𝑧 = 𝐶 → (𝑧𝑅𝐵 ↔ 𝐶𝑅𝐵)) | 
| 18 |   | breq1 4036 | 
. . . . . 6
⊢ (𝑧 = 𝐶 → (𝑧𝑅𝐶 ↔ 𝐶𝑅𝐶)) | 
| 19 | 17, 18 | bibi12d 235 | 
. . . . 5
⊢ (𝑧 = 𝐶 → ((𝑧𝑅𝐵 ↔ 𝑧𝑅𝐶) ↔ (𝐶𝑅𝐵 ↔ 𝐶𝑅𝐶))) | 
| 20 |   | wetriext.c | 
. . . . 5
⊢ (𝜑 → 𝐶 ∈ 𝐴) | 
| 21 | 19, 4, 20 | rspcdva 2873 | 
. . . 4
⊢ (𝜑 → (𝐶𝑅𝐵 ↔ 𝐶𝑅𝐶)) | 
| 22 | 21 | biimpa 296 | 
. . 3
⊢ ((𝜑 ∧ 𝐶𝑅𝐵) → 𝐶𝑅𝐶) | 
| 23 |   | frirrg 4385 | 
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴) → ¬ 𝐶𝑅𝐶) | 
| 24 | 10, 11, 20, 23 | syl3anc 1249 | 
. . . 4
⊢ (𝜑 → ¬ 𝐶𝑅𝐶) | 
| 25 | 24 | adantr 276 | 
. . 3
⊢ ((𝜑 ∧ 𝐶𝑅𝐵) → ¬ 𝐶𝑅𝐶) | 
| 26 | 22, 25 | pm2.21dd 621 | 
. 2
⊢ ((𝜑 ∧ 𝐶𝑅𝐵) → 𝐵 = 𝐶) | 
| 27 |   | wetriext.tri | 
. . 3
⊢ (𝜑 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎)) | 
| 28 |   | breq1 4036 | 
. . . . . 6
⊢ (𝑎 = 𝐵 → (𝑎𝑅𝑏 ↔ 𝐵𝑅𝑏)) | 
| 29 |   | eqeq1 2203 | 
. . . . . 6
⊢ (𝑎 = 𝐵 → (𝑎 = 𝑏 ↔ 𝐵 = 𝑏)) | 
| 30 |   | breq2 4037 | 
. . . . . 6
⊢ (𝑎 = 𝐵 → (𝑏𝑅𝑎 ↔ 𝑏𝑅𝐵)) | 
| 31 | 28, 29, 30 | 3orbi123d 1322 | 
. . . . 5
⊢ (𝑎 = 𝐵 → ((𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) ↔ (𝐵𝑅𝑏 ∨ 𝐵 = 𝑏 ∨ 𝑏𝑅𝐵))) | 
| 32 |   | breq2 4037 | 
. . . . . 6
⊢ (𝑏 = 𝐶 → (𝐵𝑅𝑏 ↔ 𝐵𝑅𝐶)) | 
| 33 |   | eqeq2 2206 | 
. . . . . 6
⊢ (𝑏 = 𝐶 → (𝐵 = 𝑏 ↔ 𝐵 = 𝐶)) | 
| 34 |   | breq1 4036 | 
. . . . . 6
⊢ (𝑏 = 𝐶 → (𝑏𝑅𝐵 ↔ 𝐶𝑅𝐵)) | 
| 35 | 32, 33, 34 | 3orbi123d 1322 | 
. . . . 5
⊢ (𝑏 = 𝐶 → ((𝐵𝑅𝑏 ∨ 𝐵 = 𝑏 ∨ 𝑏𝑅𝐵) ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | 
| 36 | 31, 35 | rspc2v 2881 | 
. . . 4
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | 
| 37 | 5, 20, 36 | syl2anc 411 | 
. . 3
⊢ (𝜑 → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵))) | 
| 38 | 27, 37 | mpd 13 | 
. 2
⊢ (𝜑 → (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶𝑅𝐵)) | 
| 39 | 15, 16, 26, 38 | mpjao3dan 1318 | 
1
⊢ (𝜑 → 𝐵 = 𝐶) |