ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontriexmidim GIF version

Theorem ontriexmidim 4558
Description: Ordinal trichotomy implies excluded middle. Closed form of ordtriexmid 4557. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
ontriexmidim (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → DECID 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem ontriexmidim
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 noel 3454 . . . . . 6 ¬ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅
21a1i 9 . . . . 5 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅)
3 ordtriexmidlem 4555 . . . . . . . 8 {𝑧 ∈ {∅} ∣ 𝜑} ∈ On
4 0elon 4427 . . . . . . . 8 ∅ ∈ On
5 eleq1 2259 . . . . . . . . . 10 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦))
6 eqeq1 2203 . . . . . . . . . 10 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 = 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} = 𝑦))
7 eleq2 2260 . . . . . . . . . 10 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦𝑥𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
85, 6, 73orbi123d 1322 . . . . . . . . 9 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ∨ {𝑧 ∈ {∅} ∣ 𝜑} = 𝑦𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
9 eleq2 2260 . . . . . . . . . 10 (𝑦 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅))
10 eqeq2 2206 . . . . . . . . . 10 (𝑦 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} = 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅))
11 eleq1 2259 . . . . . . . . . 10 (𝑦 = ∅ → (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
129, 10, 113orbi123d 1322 . . . . . . . . 9 (𝑦 = ∅ → (({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ∨ {𝑧 ∈ {∅} ∣ 𝜑} = 𝑦𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
138, 12rspc2v 2881 . . . . . . . 8 (({𝑧 ∈ {∅} ∣ 𝜑} ∈ On ∧ ∅ ∈ On) → (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
143, 4, 13mp2an 426 . . . . . . 7 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
15 3orass 983 . . . . . . 7 (({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
1614, 15sylib 122 . . . . . 6 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
1716orcomd 730 . . . . 5 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → (({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) ∨ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅))
182, 17ecased 1360 . . . 4 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
19 ordtriexmidlem2 4556 . . . . 5 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
20 0ex 4160 . . . . . . . 8 ∅ ∈ V
2120snid 3653 . . . . . . 7 ∅ ∈ {∅}
22 biidd 172 . . . . . . . 8 (𝑧 = ∅ → (𝜑𝜑))
2322elrab3 2921 . . . . . . 7 (∅ ∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
2421, 23ax-mp 5 . . . . . 6 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
2524biimpi 120 . . . . 5 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
2619, 25orim12i 760 . . . 4 (({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑𝜑))
2718, 26syl 14 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → (¬ 𝜑𝜑))
2827orcomd 730 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → (𝜑 ∨ ¬ 𝜑))
29 df-dc 836 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
3028, 29sylibr 134 1 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 709  DECID wdc 835  w3o 979   = wceq 1364  wcel 2167  wral 2475  {crab 2479  c0 3450  {csn 3622  Oncon0 4398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406
This theorem is referenced by:  exmidontri  7306
  Copyright terms: Public domain W3C validator