| Step | Hyp | Ref
 | Expression | 
| 1 |   | noel 3454 | 
. . . . . 6
⊢  ¬
{𝑧 ∈ {∅} ∣
𝜑} ∈
∅ | 
| 2 | 1 | a1i 9 | 
. . . . 5
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ¬ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅) | 
| 3 |   | ordtriexmidlem 4555 | 
. . . . . . . 8
⊢ {𝑧 ∈ {∅} ∣ 𝜑} ∈ On | 
| 4 |   | 0elon 4427 | 
. . . . . . . 8
⊢ ∅
∈ On | 
| 5 |   | eleq1 2259 | 
. . . . . . . . . 10
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 ∈ 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦)) | 
| 6 |   | eqeq1 2203 | 
. . . . . . . . . 10
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 = 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} = 𝑦)) | 
| 7 |   | eleq2 2260 | 
. . . . . . . . . 10
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑})) | 
| 8 | 5, 6, 7 | 3orbi123d 1322 | 
. . . . . . . . 9
⊢ (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ∨ {𝑧 ∈ {∅} ∣ 𝜑} = 𝑦 ∨ 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑}))) | 
| 9 |   | eleq2 2260 | 
. . . . . . . . . 10
⊢ (𝑦 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅)) | 
| 10 |   | eqeq2 2206 | 
. . . . . . . . . 10
⊢ (𝑦 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} = 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅)) | 
| 11 |   | eleq1 2259 | 
. . . . . . . . . 10
⊢ (𝑦 = ∅ → (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) | 
| 12 | 9, 10, 11 | 3orbi123d 1322 | 
. . . . . . . . 9
⊢ (𝑦 = ∅ → (({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ∨ {𝑧 ∈ {∅} ∣ 𝜑} = 𝑦 ∨ 𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))) | 
| 13 | 8, 12 | rspc2v 2881 | 
. . . . . . . 8
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ∈ On ∧ ∅ ∈
On) → (∀𝑥
∈ On ∀𝑦 ∈
On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))) | 
| 14 | 3, 4, 13 | mp2an 426 | 
. . . . . . 7
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) | 
| 15 |   | 3orass 983 | 
. . . . . . 7
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈
{𝑧 ∈ {∅} ∣
𝜑}) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈
{𝑧 ∈ {∅} ∣
𝜑}))) | 
| 16 | 14, 15 | sylib 122 | 
. . . . . 6
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))) | 
| 17 | 16 | orcomd 730 | 
. . . . 5
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → (({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) ∨ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅)) | 
| 18 | 2, 17 | ecased 1360 | 
. . . 4
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})) | 
| 19 |   | ordtriexmidlem2 4556 | 
. . . . 5
⊢ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑) | 
| 20 |   | 0ex 4160 | 
. . . . . . . 8
⊢ ∅
∈ V | 
| 21 | 20 | snid 3653 | 
. . . . . . 7
⊢ ∅
∈ {∅} | 
| 22 |   | biidd 172 | 
. . . . . . . 8
⊢ (𝑧 = ∅ → (𝜑 ↔ 𝜑)) | 
| 23 | 22 | elrab3 2921 | 
. . . . . . 7
⊢ (∅
∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)) | 
| 24 | 21, 23 | ax-mp 5 | 
. . . . . 6
⊢ (∅
∈ {𝑧 ∈ {∅}
∣ 𝜑} ↔ 𝜑) | 
| 25 | 24 | biimpi 120 | 
. . . . 5
⊢ (∅
∈ {𝑧 ∈ {∅}
∣ 𝜑} → 𝜑) | 
| 26 | 19, 25 | orim12i 760 | 
. . . 4
⊢ (({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈
{𝑧 ∈ {∅} ∣
𝜑}) → (¬ 𝜑 ∨ 𝜑)) | 
| 27 | 18, 26 | syl 14 | 
. . 3
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → (¬ 𝜑 ∨ 𝜑)) | 
| 28 | 27 | orcomd 730 | 
. 2
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → (𝜑 ∨ ¬ 𝜑)) | 
| 29 |   | df-dc 836 | 
. 2
⊢
(DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | 
| 30 | 28, 29 | sylibr 134 | 
1
⊢
(∀𝑥 ∈ On
∀𝑦 ∈ On (𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) → DECID 𝜑) |