ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontriexmidim GIF version

Theorem ontriexmidim 4578
Description: Ordinal trichotomy implies excluded middle. Closed form of ordtriexmid 4577. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
ontriexmidim (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → DECID 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem ontriexmidim
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 noel 3468 . . . . . 6 ¬ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅
21a1i 9 . . . . 5 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅)
3 ordtriexmidlem 4575 . . . . . . . 8 {𝑧 ∈ {∅} ∣ 𝜑} ∈ On
4 0elon 4447 . . . . . . . 8 ∅ ∈ On
5 eleq1 2269 . . . . . . . . . 10 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦))
6 eqeq1 2213 . . . . . . . . . 10 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 = 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} = 𝑦))
7 eleq2 2270 . . . . . . . . . 10 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦𝑥𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
85, 6, 73orbi123d 1324 . . . . . . . . 9 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ∨ {𝑧 ∈ {∅} ∣ 𝜑} = 𝑦𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
9 eleq2 2270 . . . . . . . . . 10 (𝑦 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅))
10 eqeq2 2216 . . . . . . . . . 10 (𝑦 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} = 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅))
11 eleq1 2269 . . . . . . . . . 10 (𝑦 = ∅ → (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
129, 10, 113orbi123d 1324 . . . . . . . . 9 (𝑦 = ∅ → (({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ∨ {𝑧 ∈ {∅} ∣ 𝜑} = 𝑦𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
138, 12rspc2v 2894 . . . . . . . 8 (({𝑧 ∈ {∅} ∣ 𝜑} ∈ On ∧ ∅ ∈ On) → (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
143, 4, 13mp2an 426 . . . . . . 7 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
15 3orass 984 . . . . . . 7 (({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
1614, 15sylib 122 . . . . . 6 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
1716orcomd 731 . . . . 5 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → (({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) ∨ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅))
182, 17ecased 1362 . . . 4 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
19 ordtriexmidlem2 4576 . . . . 5 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
20 0ex 4179 . . . . . . . 8 ∅ ∈ V
2120snid 3669 . . . . . . 7 ∅ ∈ {∅}
22 biidd 172 . . . . . . . 8 (𝑧 = ∅ → (𝜑𝜑))
2322elrab3 2934 . . . . . . 7 (∅ ∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
2421, 23ax-mp 5 . . . . . 6 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
2524biimpi 120 . . . . 5 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
2619, 25orim12i 761 . . . 4 (({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑𝜑))
2718, 26syl 14 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → (¬ 𝜑𝜑))
2827orcomd 731 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → (𝜑 ∨ ¬ 𝜑))
29 df-dc 837 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
3028, 29sylibr 134 1 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 710  DECID wdc 836  w3o 980   = wceq 1373  wcel 2177  wral 2485  {crab 2489  c0 3464  {csn 3638  Oncon0 4418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-uni 3857  df-tr 4151  df-iord 4421  df-on 4423  df-suc 4426
This theorem is referenced by:  exmidontri  7370
  Copyright terms: Public domain W3C validator