ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ontriexmidim GIF version

Theorem ontriexmidim 4568
Description: Ordinal trichotomy implies excluded middle. Closed form of ordtriexmid 4567. (Contributed by Jim Kingdon, 26-Aug-2024.)
Assertion
Ref Expression
ontriexmidim (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → DECID 𝜑)
Distinct variable group:   𝜑,𝑥,𝑦

Proof of Theorem ontriexmidim
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 noel 3463 . . . . . 6 ¬ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅
21a1i 9 . . . . 5 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ¬ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅)
3 ordtriexmidlem 4565 . . . . . . . 8 {𝑧 ∈ {∅} ∣ 𝜑} ∈ On
4 0elon 4437 . . . . . . . 8 ∅ ∈ On
5 eleq1 2267 . . . . . . . . . 10 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦))
6 eqeq1 2211 . . . . . . . . . 10 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑥 = 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} = 𝑦))
7 eleq2 2268 . . . . . . . . . 10 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝑦𝑥𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
85, 6, 73orbi123d 1323 . . . . . . . . 9 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → ((𝑥𝑦𝑥 = 𝑦𝑦𝑥) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ∨ {𝑧 ∈ {∅} ∣ 𝜑} = 𝑦𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
9 eleq2 2268 . . . . . . . . . 10 (𝑦 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅))
10 eqeq2 2214 . . . . . . . . . 10 (𝑦 = ∅ → ({𝑧 ∈ {∅} ∣ 𝜑} = 𝑦 ↔ {𝑧 ∈ {∅} ∣ 𝜑} = ∅))
11 eleq1 2267 . . . . . . . . . 10 (𝑦 = ∅ → (𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
129, 10, 113orbi123d 1323 . . . . . . . . 9 (𝑦 = ∅ → (({𝑧 ∈ {∅} ∣ 𝜑} ∈ 𝑦 ∨ {𝑧 ∈ {∅} ∣ 𝜑} = 𝑦𝑦 ∈ {𝑧 ∈ {∅} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
138, 12rspc2v 2889 . . . . . . . 8 (({𝑧 ∈ {∅} ∣ 𝜑} ∈ On ∧ ∅ ∈ On) → (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
143, 4, 13mp2an 426 . . . . . . 7 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
15 3orass 983 . . . . . . 7 (({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ {𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) ↔ ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
1614, 15sylib 122 . . . . . 6 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅ ∨ ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑})))
1716orcomd 730 . . . . 5 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → (({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) ∨ {𝑧 ∈ {∅} ∣ 𝜑} ∈ ∅))
182, 17ecased 1361 . . . 4 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}))
19 ordtriexmidlem2 4566 . . . . 5 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
20 0ex 4170 . . . . . . . 8 ∅ ∈ V
2120snid 3663 . . . . . . 7 ∅ ∈ {∅}
22 biidd 172 . . . . . . . 8 (𝑧 = ∅ → (𝜑𝜑))
2322elrab3 2929 . . . . . . 7 (∅ ∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
2421, 23ax-mp 5 . . . . . 6 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
2524biimpi 120 . . . . 5 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
2619, 25orim12i 760 . . . 4 (({𝑧 ∈ {∅} ∣ 𝜑} = ∅ ∨ ∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑}) → (¬ 𝜑𝜑))
2718, 26syl 14 . . 3 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → (¬ 𝜑𝜑))
2827orcomd 730 . 2 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → (𝜑 ∨ ¬ 𝜑))
29 df-dc 836 . 2 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
3028, 29sylibr 134 1 (∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥𝑦𝑥 = 𝑦𝑦𝑥) → DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 709  DECID wdc 835  w3o 979   = wceq 1372  wcel 2175  wral 2483  {crab 2487  c0 3459  {csn 3632  Oncon0 4408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-uni 3850  df-tr 4142  df-iord 4411  df-on 4413  df-suc 4416
This theorem is referenced by:  exmidontri  7333
  Copyright terms: Public domain W3C validator