| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-nqqs 7415 | 
. 2
⊢
Q = ((N × N) /
~Q ) | 
| 2 |   | breq1 4036 | 
. . 3
⊢
([〈𝑧, 𝑤〉]
~Q = 𝐴 → ([〈𝑧, 𝑤〉] ~Q
<Q [〈𝑢, 𝑣〉] ~Q ↔
𝐴
<Q [〈𝑢, 𝑣〉] ~Q
)) | 
| 3 |   | eqeq1 2203 | 
. . 3
⊢
([〈𝑧, 𝑤〉]
~Q = 𝐴 → ([〈𝑧, 𝑤〉] ~Q =
[〈𝑢, 𝑣〉]
~Q ↔ 𝐴 = [〈𝑢, 𝑣〉] ~Q
)) | 
| 4 |   | breq2 4037 | 
. . 3
⊢
([〈𝑧, 𝑤〉]
~Q = 𝐴 → ([〈𝑢, 𝑣〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q ↔
[〈𝑢, 𝑣〉]
~Q <Q 𝐴)) | 
| 5 | 2, 3, 4 | 3orbi123d 1322 | 
. 2
⊢
([〈𝑧, 𝑤〉]
~Q = 𝐴 → (([〈𝑧, 𝑤〉] ~Q
<Q [〈𝑢, 𝑣〉] ~Q ∨
[〈𝑧, 𝑤〉]
~Q = [〈𝑢, 𝑣〉] ~Q ∨
[〈𝑢, 𝑣〉]
~Q <Q [〈𝑧, 𝑤〉] ~Q ) ↔
(𝐴
<Q [〈𝑢, 𝑣〉] ~Q ∨
𝐴 = [〈𝑢, 𝑣〉] ~Q ∨
[〈𝑢, 𝑣〉]
~Q <Q 𝐴))) | 
| 6 |   | breq2 4037 | 
. . 3
⊢
([〈𝑢, 𝑣〉]
~Q = 𝐵 → (𝐴 <Q [〈𝑢, 𝑣〉] ~Q ↔
𝐴
<Q 𝐵)) | 
| 7 |   | eqeq2 2206 | 
. . 3
⊢
([〈𝑢, 𝑣〉]
~Q = 𝐵 → (𝐴 = [〈𝑢, 𝑣〉] ~Q ↔
𝐴 = 𝐵)) | 
| 8 |   | breq1 4036 | 
. . 3
⊢
([〈𝑢, 𝑣〉]
~Q = 𝐵 → ([〈𝑢, 𝑣〉] ~Q
<Q 𝐴 ↔ 𝐵 <Q 𝐴)) | 
| 9 | 6, 7, 8 | 3orbi123d 1322 | 
. 2
⊢
([〈𝑢, 𝑣〉]
~Q = 𝐵 → ((𝐴 <Q [〈𝑢, 𝑣〉] ~Q ∨
𝐴 = [〈𝑢, 𝑣〉] ~Q ∨
[〈𝑢, 𝑣〉]
~Q <Q 𝐴) ↔ (𝐴 <Q 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 <Q 𝐴))) | 
| 10 |   | mulclpi 7395 | 
. . . . 5
⊢ ((𝑧 ∈ N ∧
𝑣 ∈ N)
→ (𝑧
·N 𝑣) ∈ N) | 
| 11 | 10 | ad2ant2rl 511 | 
. . . 4
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑢 ∈
N ∧ 𝑣
∈ N)) → (𝑧 ·N 𝑣) ∈
N) | 
| 12 |   | mulclpi 7395 | 
. . . . 5
⊢ ((𝑤 ∈ N ∧
𝑢 ∈ N)
→ (𝑤
·N 𝑢) ∈ N) | 
| 13 | 12 | ad2ant2lr 510 | 
. . . 4
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑢 ∈
N ∧ 𝑣
∈ N)) → (𝑤 ·N 𝑢) ∈
N) | 
| 14 |   | pitri3or 7389 | 
. . . 4
⊢ (((𝑧
·N 𝑣) ∈ N ∧ (𝑤
·N 𝑢) ∈ N) → ((𝑧
·N 𝑣) <N (𝑤
·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N
(𝑧
·N 𝑣))) | 
| 15 | 11, 13, 14 | syl2anc 411 | 
. . 3
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑢 ∈
N ∧ 𝑣
∈ N)) → ((𝑧 ·N 𝑣) <N
(𝑤
·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N
(𝑧
·N 𝑣))) | 
| 16 |   | ordpipqqs 7441 | 
. . . 4
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑢 ∈
N ∧ 𝑣
∈ N)) → ([〈𝑧, 𝑤〉] ~Q
<Q [〈𝑢, 𝑣〉] ~Q ↔
(𝑧
·N 𝑣) <N (𝑤
·N 𝑢))) | 
| 17 |   | enqeceq 7426 | 
. . . 4
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑢 ∈
N ∧ 𝑣
∈ N)) → ([〈𝑧, 𝑤〉] ~Q =
[〈𝑢, 𝑣〉]
~Q ↔ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢))) | 
| 18 |   | ordpipqqs 7441 | 
. . . . . 6
⊢ (((𝑢 ∈ N ∧
𝑣 ∈ N)
∧ (𝑧 ∈
N ∧ 𝑤
∈ N)) → ([〈𝑢, 𝑣〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q ↔
(𝑢
·N 𝑤) <N (𝑣
·N 𝑧))) | 
| 19 | 18 | ancoms 268 | 
. . . . 5
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑢 ∈
N ∧ 𝑣
∈ N)) → ([〈𝑢, 𝑣〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q ↔
(𝑢
·N 𝑤) <N (𝑣
·N 𝑧))) | 
| 20 |   | mulcompig 7398 | 
. . . . . . 7
⊢ ((𝑤 ∈ N ∧
𝑢 ∈ N)
→ (𝑤
·N 𝑢) = (𝑢 ·N 𝑤)) | 
| 21 | 20 | ad2ant2lr 510 | 
. . . . . 6
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑢 ∈
N ∧ 𝑣
∈ N)) → (𝑤 ·N 𝑢) = (𝑢 ·N 𝑤)) | 
| 22 |   | mulcompig 7398 | 
. . . . . . 7
⊢ ((𝑧 ∈ N ∧
𝑣 ∈ N)
→ (𝑧
·N 𝑣) = (𝑣 ·N 𝑧)) | 
| 23 | 22 | ad2ant2rl 511 | 
. . . . . 6
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑢 ∈
N ∧ 𝑣
∈ N)) → (𝑧 ·N 𝑣) = (𝑣 ·N 𝑧)) | 
| 24 | 21, 23 | breq12d 4046 | 
. . . . 5
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑢 ∈
N ∧ 𝑣
∈ N)) → ((𝑤 ·N 𝑢) <N
(𝑧
·N 𝑣) ↔ (𝑢 ·N 𝑤) <N
(𝑣
·N 𝑧))) | 
| 25 | 19, 24 | bitr4d 191 | 
. . . 4
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑢 ∈
N ∧ 𝑣
∈ N)) → ([〈𝑢, 𝑣〉] ~Q
<Q [〈𝑧, 𝑤〉] ~Q ↔
(𝑤
·N 𝑢) <N (𝑧
·N 𝑣))) | 
| 26 | 16, 17, 25 | 3orbi123d 1322 | 
. . 3
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑢 ∈
N ∧ 𝑣
∈ N)) → (([〈𝑧, 𝑤〉] ~Q
<Q [〈𝑢, 𝑣〉] ~Q ∨
[〈𝑧, 𝑤〉]
~Q = [〈𝑢, 𝑣〉] ~Q ∨
[〈𝑢, 𝑣〉]
~Q <Q [〈𝑧, 𝑤〉] ~Q ) ↔
((𝑧
·N 𝑣) <N (𝑤
·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N
(𝑧
·N 𝑣)))) | 
| 27 | 15, 26 | mpbird 167 | 
. 2
⊢ (((𝑧 ∈ N ∧
𝑤 ∈ N)
∧ (𝑢 ∈
N ∧ 𝑣
∈ N)) → ([〈𝑧, 𝑤〉] ~Q
<Q [〈𝑢, 𝑣〉] ~Q ∨
[〈𝑧, 𝑤〉]
~Q = [〈𝑢, 𝑣〉] ~Q ∨
[〈𝑢, 𝑣〉]
~Q <Q [〈𝑧, 𝑤〉] ~Q
)) | 
| 28 | 1, 5, 9, 27 | 2ecoptocl 6682 | 
1
⊢ ((𝐴 ∈ Q ∧
𝐵 ∈ Q)
→ (𝐴
<Q 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 <Q 𝐴)) |