ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqtri3or GIF version

Theorem nqtri3or 7337
Description: Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.)
Assertion
Ref Expression
nqtri3or ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵𝐴 = 𝐵𝐵 <Q 𝐴))

Proof of Theorem nqtri3or
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7289 . 2 Q = ((N × N) / ~Q )
2 breq1 3985 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q ))
3 eqeq1 2172 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → ([⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q𝐴 = [⟨𝑢, 𝑣⟩] ~Q ))
4 breq2 3986 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ [⟨𝑢, 𝑣⟩] ~Q <Q 𝐴))
52, 3, 43orbi123d 1301 . 2 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → (([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ (𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q 𝐴)))
6 breq2 3986 . . 3 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → (𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 <Q 𝐵))
7 eqeq2 2175 . . 3 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → (𝐴 = [⟨𝑢, 𝑣⟩] ~Q𝐴 = 𝐵))
8 breq1 3985 . . 3 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → ([⟨𝑢, 𝑣⟩] ~Q <Q 𝐴𝐵 <Q 𝐴))
96, 7, 83orbi123d 1301 . 2 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → ((𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q 𝐴) ↔ (𝐴 <Q 𝐵𝐴 = 𝐵𝐵 <Q 𝐴)))
10 mulclpi 7269 . . . . 5 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) ∈ N)
1110ad2ant2rl 503 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑧 ·N 𝑣) ∈ N)
12 mulclpi 7269 . . . . 5 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
1312ad2ant2lr 502 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑤 ·N 𝑢) ∈ N)
14 pitri3or 7263 . . . 4 (((𝑧 ·N 𝑣) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N) → ((𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣)))
1511, 13, 14syl2anc 409 . . 3 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ((𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣)))
16 ordpipqqs 7315 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ↔ (𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢)))
17 enqeceq 7300 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ↔ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢)))
18 ordpipqqs 7315 . . . . . 6 (((𝑢N𝑣N) ∧ (𝑧N𝑤N)) → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑢 ·N 𝑤) <N (𝑣 ·N 𝑧)))
1918ancoms 266 . . . . 5 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑢 ·N 𝑤) <N (𝑣 ·N 𝑧)))
20 mulcompig 7272 . . . . . . 7 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) = (𝑢 ·N 𝑤))
2120ad2ant2lr 502 . . . . . 6 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑤 ·N 𝑢) = (𝑢 ·N 𝑤))
22 mulcompig 7272 . . . . . . 7 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) = (𝑣 ·N 𝑧))
2322ad2ant2rl 503 . . . . . 6 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑧 ·N 𝑣) = (𝑣 ·N 𝑧))
2421, 23breq12d 3995 . . . . 5 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ((𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣) ↔ (𝑢 ·N 𝑤) <N (𝑣 ·N 𝑧)))
2519, 24bitr4d 190 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣)))
2616, 17, 253orbi123d 1301 . . 3 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ((𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣))))
2715, 26mpbird 166 . 2 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ))
281, 5, 9, 272ecoptocl 6589 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵𝐴 = 𝐵𝐵 <Q 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3o 967   = wceq 1343  wcel 2136  cop 3579   class class class wbr 3982  (class class class)co 5842  [cec 6499  Ncnpi 7213   ·N cmi 7215   <N clti 7216   ~Q ceq 7220  Qcnq 7221   <Q cltq 7226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-lti 7248  df-enq 7288  df-nqqs 7289  df-ltnqqs 7294
This theorem is referenced by:  ltsonq  7339  nqtric  7340  addlocprlem  7476  nqprloc  7486  distrlem4prl  7525  distrlem4pru  7526  ltexprlemrl  7551  aptiprleml  7580  aptiprlemu  7581
  Copyright terms: Public domain W3C validator