ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqtri3or GIF version

Theorem nqtri3or 7551
Description: Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.)
Assertion
Ref Expression
nqtri3or ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵𝐴 = 𝐵𝐵 <Q 𝐴))

Proof of Theorem nqtri3or
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7503 . 2 Q = ((N × N) / ~Q )
2 breq1 4065 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q ))
3 eqeq1 2216 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → ([⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q𝐴 = [⟨𝑢, 𝑣⟩] ~Q ))
4 breq2 4066 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ [⟨𝑢, 𝑣⟩] ~Q <Q 𝐴))
52, 3, 43orbi123d 1326 . 2 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → (([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ (𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q 𝐴)))
6 breq2 4066 . . 3 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → (𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 <Q 𝐵))
7 eqeq2 2219 . . 3 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → (𝐴 = [⟨𝑢, 𝑣⟩] ~Q𝐴 = 𝐵))
8 breq1 4065 . . 3 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → ([⟨𝑢, 𝑣⟩] ~Q <Q 𝐴𝐵 <Q 𝐴))
96, 7, 83orbi123d 1326 . 2 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → ((𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q 𝐴) ↔ (𝐴 <Q 𝐵𝐴 = 𝐵𝐵 <Q 𝐴)))
10 mulclpi 7483 . . . . 5 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) ∈ N)
1110ad2ant2rl 511 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑧 ·N 𝑣) ∈ N)
12 mulclpi 7483 . . . . 5 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
1312ad2ant2lr 510 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑤 ·N 𝑢) ∈ N)
14 pitri3or 7477 . . . 4 (((𝑧 ·N 𝑣) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N) → ((𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣)))
1511, 13, 14syl2anc 411 . . 3 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ((𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣)))
16 ordpipqqs 7529 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ↔ (𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢)))
17 enqeceq 7514 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ↔ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢)))
18 ordpipqqs 7529 . . . . . 6 (((𝑢N𝑣N) ∧ (𝑧N𝑤N)) → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑢 ·N 𝑤) <N (𝑣 ·N 𝑧)))
1918ancoms 268 . . . . 5 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑢 ·N 𝑤) <N (𝑣 ·N 𝑧)))
20 mulcompig 7486 . . . . . . 7 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) = (𝑢 ·N 𝑤))
2120ad2ant2lr 510 . . . . . 6 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑤 ·N 𝑢) = (𝑢 ·N 𝑤))
22 mulcompig 7486 . . . . . . 7 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) = (𝑣 ·N 𝑧))
2322ad2ant2rl 511 . . . . . 6 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑧 ·N 𝑣) = (𝑣 ·N 𝑧))
2421, 23breq12d 4075 . . . . 5 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ((𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣) ↔ (𝑢 ·N 𝑤) <N (𝑣 ·N 𝑧)))
2519, 24bitr4d 191 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣)))
2616, 17, 253orbi123d 1326 . . 3 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ((𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣))))
2715, 26mpbird 167 . 2 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ))
281, 5, 9, 272ecoptocl 6740 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵𝐴 = 𝐵𝐵 <Q 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3o 982   = wceq 1375  wcel 2180  cop 3649   class class class wbr 4062  (class class class)co 5974  [cec 6648  Ncnpi 7427   ·N cmi 7429   <N clti 7430   ~Q ceq 7434  Qcnq 7435   <Q cltq 7440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-eprel 4357  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-mi 7461  df-lti 7462  df-enq 7502  df-nqqs 7503  df-ltnqqs 7508
This theorem is referenced by:  ltsonq  7553  nqtric  7554  addlocprlem  7690  nqprloc  7700  distrlem4prl  7739  distrlem4pru  7740  ltexprlemrl  7765  aptiprleml  7794  aptiprlemu  7795
  Copyright terms: Public domain W3C validator