ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqtri3or GIF version

Theorem nqtri3or 6858
Description: Trichotomy for positive fractions. (Contributed by Jim Kingdon, 21-Sep-2019.)
Assertion
Ref Expression
nqtri3or ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵𝐴 = 𝐵𝐵 <Q 𝐴))

Proof of Theorem nqtri3or
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6810 . 2 Q = ((N × N) / ~Q )
2 breq1 3814 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q ))
3 eqeq1 2089 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → ([⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q𝐴 = [⟨𝑢, 𝑣⟩] ~Q ))
4 breq2 3815 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ [⟨𝑢, 𝑣⟩] ~Q <Q 𝐴))
52, 3, 43orbi123d 1243 . 2 ([⟨𝑧, 𝑤⟩] ~Q = 𝐴 → (([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ (𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q 𝐴)))
6 breq2 3815 . . 3 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → (𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 <Q 𝐵))
7 eqeq2 2092 . . 3 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → (𝐴 = [⟨𝑢, 𝑣⟩] ~Q𝐴 = 𝐵))
8 breq1 3814 . . 3 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → ([⟨𝑢, 𝑣⟩] ~Q <Q 𝐴𝐵 <Q 𝐴))
96, 7, 83orbi123d 1243 . 2 ([⟨𝑢, 𝑣⟩] ~Q = 𝐵 → ((𝐴 <Q [⟨𝑢, 𝑣⟩] ~Q𝐴 = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q 𝐴) ↔ (𝐴 <Q 𝐵𝐴 = 𝐵𝐵 <Q 𝐴)))
10 mulclpi 6790 . . . . 5 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) ∈ N)
1110ad2ant2rl 495 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑧 ·N 𝑣) ∈ N)
12 mulclpi 6790 . . . . 5 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) ∈ N)
1312ad2ant2lr 494 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑤 ·N 𝑢) ∈ N)
14 pitri3or 6784 . . . 4 (((𝑧 ·N 𝑣) ∈ N ∧ (𝑤 ·N 𝑢) ∈ N) → ((𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣)))
1511, 13, 14syl2anc 403 . . 3 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ((𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣)))
16 ordpipqqs 6836 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ↔ (𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢)))
17 enqeceq 6821 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ↔ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢)))
18 ordpipqqs 6836 . . . . . 6 (((𝑢N𝑣N) ∧ (𝑧N𝑤N)) → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑢 ·N 𝑤) <N (𝑣 ·N 𝑧)))
1918ancoms 264 . . . . 5 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑢 ·N 𝑤) <N (𝑣 ·N 𝑧)))
20 mulcompig 6793 . . . . . . 7 ((𝑤N𝑢N) → (𝑤 ·N 𝑢) = (𝑢 ·N 𝑤))
2120ad2ant2lr 494 . . . . . 6 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑤 ·N 𝑢) = (𝑢 ·N 𝑤))
22 mulcompig 6793 . . . . . . 7 ((𝑧N𝑣N) → (𝑧 ·N 𝑣) = (𝑣 ·N 𝑧))
2322ad2ant2rl 495 . . . . . 6 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (𝑧 ·N 𝑣) = (𝑣 ·N 𝑧))
2421, 23breq12d 3824 . . . . 5 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ((𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣) ↔ (𝑢 ·N 𝑤) <N (𝑣 ·N 𝑧)))
2519, 24bitr4d 189 . . . 4 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣)))
2616, 17, 253orbi123d 1243 . . 3 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → (([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ((𝑧 ·N 𝑣) <N (𝑤 ·N 𝑢) ∨ (𝑧 ·N 𝑣) = (𝑤 ·N 𝑢) ∨ (𝑤 ·N 𝑢) <N (𝑧 ·N 𝑣))))
2715, 26mpbird 165 . 2 (((𝑧N𝑤N) ∧ (𝑢N𝑣N)) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑧, 𝑤⟩] ~Q = [⟨𝑢, 𝑣⟩] ~Q ∨ [⟨𝑢, 𝑣⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ))
281, 5, 9, 272ecoptocl 6310 1 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵𝐴 = 𝐵𝐵 <Q 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3o 919   = wceq 1285  wcel 1434  cop 3425   class class class wbr 3811  (class class class)co 5591  [cec 6220  Ncnpi 6734   ·N cmi 6736   <N clti 6737   ~Q ceq 6741  Qcnq 6742   <Q cltq 6747
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4080  df-id 4084  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-qs 6228  df-ni 6766  df-mi 6768  df-lti 6769  df-enq 6809  df-nqqs 6810  df-ltnqqs 6815
This theorem is referenced by:  ltsonq  6860  nqtric  6861  addlocprlem  6997  nqprloc  7007  distrlem4prl  7046  distrlem4pru  7047  ltexprlemrl  7072  aptiprleml  7101  aptiprlemu  7102
  Copyright terms: Public domain W3C validator