ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ztri3or GIF version

Theorem ztri3or 9435
Description: Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
ztri3or ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))

Proof of Theorem ztri3or
StepHypRef Expression
1 zsubcl 9433 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
2 ztri3or0 9434 . . 3 ((𝑀𝑁) ∈ ℤ → ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁)))
31, 2syl 14 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁)))
4 zre 9396 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
54adantr 276 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
6 zre 9396 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
76adantl 277 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
85, 7posdifd 8625 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 0 < (𝑁𝑀)))
97, 5resubcld 8473 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀) ∈ ℝ)
109lt0neg2d 8609 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < (𝑁𝑀) ↔ -(𝑁𝑀) < 0))
117recnd 8121 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
125recnd 8121 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
1311, 12negsubdi2d 8419 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -(𝑁𝑀) = (𝑀𝑁))
1413breq1d 4061 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-(𝑁𝑀) < 0 ↔ (𝑀𝑁) < 0))
158, 10, 143bitrd 214 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀𝑁) < 0))
1612, 11subeq0ad 8413 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
1716bicomd 141 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁) = 0))
187, 5posdifd 8625 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ 0 < (𝑀𝑁)))
1915, 17, 183orbi123d 1324 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀) ↔ ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁))))
203, 19mpbird 167 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3o 980   = wceq 1373  wcel 2177   class class class wbr 4051  (class class class)co 5957  cr 7944  0cc0 7945   < clt 8127  cmin 8263  -cneg 8264  cz 9392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393
This theorem is referenced by:  zletric  9436  zlelttric  9437  zltnle  9438  zleloe  9439  zapne  9467  zdceq  9468  zdcle  9469  zdclt  9470  uzm1  9699  qtri3or  10405  iseqf1olemkle  10664  iseqf1olemklt  10665  iswrdiz  11023  cvgratz  11918  divalglemeunn  12307  divalglemeuneg  12309  znege1  12575  lgsdilem  15579
  Copyright terms: Public domain W3C validator