| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ztri3or | GIF version | ||
| Description: Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| ztri3or | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zsubcl 9395 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) | |
| 2 | ztri3or0 9396 | . . 3 ⊢ ((𝑀 − 𝑁) ∈ ℤ → ((𝑀 − 𝑁) < 0 ∨ (𝑀 − 𝑁) = 0 ∨ 0 < (𝑀 − 𝑁))) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 𝑁) < 0 ∨ (𝑀 − 𝑁) = 0 ∨ 0 < (𝑀 − 𝑁))) |
| 4 | zre 9358 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 5 | 4 | adantr 276 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ) |
| 6 | zre 9358 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 7 | 6 | adantl 277 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ) |
| 8 | 5, 7 | posdifd 8587 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 0 < (𝑁 − 𝑀))) |
| 9 | 7, 5 | resubcld 8435 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 − 𝑀) ∈ ℝ) |
| 10 | 9 | lt0neg2d 8571 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < (𝑁 − 𝑀) ↔ -(𝑁 − 𝑀) < 0)) |
| 11 | 7 | recnd 8083 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ) |
| 12 | 5 | recnd 8083 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 13 | 11, 12 | negsubdi2d 8381 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -(𝑁 − 𝑀) = (𝑀 − 𝑁)) |
| 14 | 13 | breq1d 4053 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-(𝑁 − 𝑀) < 0 ↔ (𝑀 − 𝑁) < 0)) |
| 15 | 8, 10, 14 | 3bitrd 214 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 − 𝑁) < 0)) |
| 16 | 12, 11 | subeq0ad 8375 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 𝑁) = 0 ↔ 𝑀 = 𝑁)) |
| 17 | 16 | bicomd 141 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀 − 𝑁) = 0)) |
| 18 | 7, 5 | posdifd 8587 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ 0 < (𝑀 − 𝑁))) |
| 19 | 15, 17, 18 | 3orbi123d 1323 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ ((𝑀 − 𝑁) < 0 ∨ (𝑀 − 𝑁) = 0 ∨ 0 < (𝑀 − 𝑁)))) |
| 20 | 3, 19 | mpbird 167 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ w3o 979 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5934 ℝcr 7906 0cc0 7907 < clt 8089 − cmin 8225 -cneg 8226 ℤcz 9354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 df-z 9355 |
| This theorem is referenced by: zletric 9398 zlelttric 9399 zltnle 9400 zleloe 9401 zapne 9429 zdceq 9430 zdcle 9431 zdclt 9432 uzm1 9661 qtri3or 10364 iseqf1olemkle 10623 iseqf1olemklt 10624 iswrdiz 10976 cvgratz 11762 divalglemeunn 12151 divalglemeuneg 12153 znege1 12419 lgsdilem 15422 |
| Copyright terms: Public domain | W3C validator |