ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ztri3or GIF version

Theorem ztri3or 9388
Description: Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
ztri3or ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))

Proof of Theorem ztri3or
StepHypRef Expression
1 zsubcl 9386 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
2 ztri3or0 9387 . . 3 ((𝑀𝑁) ∈ ℤ → ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁)))
31, 2syl 14 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁)))
4 zre 9349 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
54adantr 276 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
6 zre 9349 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
76adantl 277 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
85, 7posdifd 8578 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 0 < (𝑁𝑀)))
97, 5resubcld 8426 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀) ∈ ℝ)
109lt0neg2d 8562 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < (𝑁𝑀) ↔ -(𝑁𝑀) < 0))
117recnd 8074 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
125recnd 8074 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
1311, 12negsubdi2d 8372 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -(𝑁𝑀) = (𝑀𝑁))
1413breq1d 4044 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-(𝑁𝑀) < 0 ↔ (𝑀𝑁) < 0))
158, 10, 143bitrd 214 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀𝑁) < 0))
1612, 11subeq0ad 8366 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
1716bicomd 141 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁) = 0))
187, 5posdifd 8578 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ 0 < (𝑀𝑁)))
1915, 17, 183orbi123d 1322 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀) ↔ ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁))))
203, 19mpbird 167 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3o 979   = wceq 1364  wcel 2167   class class class wbr 4034  (class class class)co 5925  cr 7897  0cc0 7898   < clt 8080  cmin 8216  -cneg 8217  cz 9345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-n0 9269  df-z 9346
This theorem is referenced by:  zletric  9389  zlelttric  9390  zltnle  9391  zleloe  9392  zapne  9419  zdceq  9420  zdcle  9421  zdclt  9422  uzm1  9651  qtri3or  10349  iseqf1olemkle  10608  iseqf1olemklt  10609  iswrdiz  10961  cvgratz  11716  divalglemeunn  12105  divalglemeuneg  12107  znege1  12373  lgsdilem  15376
  Copyright terms: Public domain W3C validator