ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ztri3or GIF version

Theorem ztri3or 8891
Description: Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
ztri3or ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))

Proof of Theorem ztri3or
StepHypRef Expression
1 zsubcl 8889 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
2 ztri3or0 8890 . . 3 ((𝑀𝑁) ∈ ℤ → ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁)))
31, 2syl 14 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁)))
4 zre 8852 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
54adantr 271 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
6 zre 8852 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
76adantl 272 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
85, 7posdifd 8106 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 0 < (𝑁𝑀)))
97, 5resubcld 7956 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀) ∈ ℝ)
109lt0neg2d 8091 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < (𝑁𝑀) ↔ -(𝑁𝑀) < 0))
117recnd 7613 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
125recnd 7613 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
1311, 12negsubdi2d 7906 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -(𝑁𝑀) = (𝑀𝑁))
1413breq1d 3877 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-(𝑁𝑀) < 0 ↔ (𝑀𝑁) < 0))
158, 10, 143bitrd 213 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀𝑁) < 0))
1612, 11subeq0ad 7900 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
1716bicomd 140 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁) = 0))
187, 5posdifd 8106 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ 0 < (𝑀𝑁)))
1915, 17, 183orbi123d 1254 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀) ↔ ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁))))
203, 19mpbird 166 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3o 926   = wceq 1296  wcel 1445   class class class wbr 3867  (class class class)co 5690  cr 7446  0cc0 7447   < clt 7619  cmin 7750  -cneg 7751  cz 8848
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849
This theorem is referenced by:  zletric  8892  zlelttric  8893  zltnle  8894  zleloe  8895  zapne  8919  zdceq  8920  zdcle  8921  zdclt  8922  uzm1  9148  qtri3or  9803  iseqf1olemkle  10050  iseqf1olemklt  10051  cvgratz  11091  divalglemeunn  11364  divalglemeuneg  11366  znege1  11599
  Copyright terms: Public domain W3C validator