ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ztri3or GIF version

Theorem ztri3or 9269
Description: Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
ztri3or ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))

Proof of Theorem ztri3or
StepHypRef Expression
1 zsubcl 9267 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
2 ztri3or0 9268 . . 3 ((𝑀𝑁) ∈ ℤ → ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁)))
31, 2syl 14 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁)))
4 zre 9230 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
54adantr 276 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
6 zre 9230 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
76adantl 277 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
85, 7posdifd 8463 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 0 < (𝑁𝑀)))
97, 5resubcld 8312 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀) ∈ ℝ)
109lt0neg2d 8447 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < (𝑁𝑀) ↔ -(𝑁𝑀) < 0))
117recnd 7960 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
125recnd 7960 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
1311, 12negsubdi2d 8258 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → -(𝑁𝑀) = (𝑀𝑁))
1413breq1d 4008 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-(𝑁𝑀) < 0 ↔ (𝑀𝑁) < 0))
158, 10, 143bitrd 214 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀𝑁) < 0))
1612, 11subeq0ad 8252 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
1716bicomd 141 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 = 𝑁 ↔ (𝑀𝑁) = 0))
187, 5posdifd 8463 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < 𝑀 ↔ 0 < (𝑀𝑁)))
1915, 17, 183orbi123d 1311 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀) ↔ ((𝑀𝑁) < 0 ∨ (𝑀𝑁) = 0 ∨ 0 < (𝑀𝑁))))
203, 19mpbird 167 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3o 977   = wceq 1353  wcel 2146   class class class wbr 3998  (class class class)co 5865  cr 7785  0cc0 7786   < clt 7966  cmin 8102  -cneg 8103  cz 9226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-z 9227
This theorem is referenced by:  zletric  9270  zlelttric  9271  zltnle  9272  zleloe  9273  zapne  9300  zdceq  9301  zdcle  9302  zdclt  9303  uzm1  9531  qtri3or  10213  iseqf1olemkle  10454  iseqf1olemklt  10455  cvgratz  11508  divalglemeunn  11893  divalglemeuneg  11895  znege1  12145  lgsdilem  14008
  Copyright terms: Public domain W3C validator