ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtri3or GIF version

Theorem qtri3or 10142
Description: Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.)
Assertion
Ref Expression
qtri3or ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))

Proof of Theorem qtri3or
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9531 . . . 4 (𝑁 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
21biimpi 119 . . 3 (𝑁 ∈ ℚ → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
32adantl 275 . 2 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
4 elq 9531 . . . . . . 7 (𝑀 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
54biimpi 119 . . . . . 6 (𝑀 ∈ ℚ → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
65ad3antrrr 484 . . . . 5 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
7 simplrl 525 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
8 simplrr 526 . . . . . . . . . . . 12 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → 𝑤 ∈ ℕ)
98ad2antrr 480 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℕ)
109nnzd 9285 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℤ)
117, 10zmulcld 9292 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℤ)
12 simplrl 525 . . . . . . . . . . 11 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → 𝑧 ∈ ℤ)
1312ad2antrr 480 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℤ)
14 simplrr 526 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
1514nnzd 9285 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
1613, 15zmulcld 9292 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑧 · 𝑦) ∈ ℤ)
17 ztri3or 9210 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℤ ∧ (𝑧 · 𝑦) ∈ ℤ) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)))
1811, 16, 17syl2anc 409 . . . . . . . 8 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)))
19 simpllr 524 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑁 = (𝑧 / 𝑤))
2019breq2d 3977 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 / 𝑦) < 𝑁 ↔ (𝑥 / 𝑦) < (𝑧 / 𝑤)))
21 breq1 3968 . . . . . . . . . . 11 (𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁 ↔ (𝑥 / 𝑦) < 𝑁))
2221adantl 275 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 < 𝑁 ↔ (𝑥 / 𝑦) < 𝑁))
237zred 9286 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℝ)
249nnrpd 9601 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℝ+)
2513zred 9286 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℝ)
2614nnrpd 9601 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℝ+)
2723, 24, 25, 26lt2mul2divd 9672 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ↔ (𝑥 / 𝑦) < (𝑧 / 𝑤)))
2820, 22, 273bitr4rd 220 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ↔ 𝑀 < 𝑁))
29 simpr 109 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑀 = (𝑥 / 𝑦))
3029, 19eqeq12d 2172 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 = 𝑁 ↔ (𝑥 / 𝑦) = (𝑧 / 𝑤)))
317zcnd 9287 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
3213zcnd 9287 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℂ)
3314nncnd 8847 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
3414nnap0d 8879 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 # 0)
3533, 34jca 304 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
369nncnd 8847 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℂ)
379nnap0d 8879 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 # 0)
3836, 37jca 304 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑤 ∈ ℂ ∧ 𝑤 # 0))
39 divmuleqap 8590 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑦 ∈ ℂ ∧ 𝑦 # 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0))) → ((𝑥 / 𝑦) = (𝑧 / 𝑤) ↔ (𝑥 · 𝑤) = (𝑧 · 𝑦)))
4031, 32, 35, 38, 39syl22anc 1221 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 / 𝑦) = (𝑧 / 𝑤) ↔ (𝑥 · 𝑤) = (𝑧 · 𝑦)))
4130, 40bitr2d 188 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑧 · 𝑦) ↔ 𝑀 = 𝑁))
4225, 26, 23, 24lt2mul2divd 9672 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑧 · 𝑦) < (𝑥 · 𝑤) ↔ (𝑧 / 𝑤) < (𝑥 / 𝑦)))
4319, 29breq12d 3978 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑁 < 𝑀 ↔ (𝑧 / 𝑤) < (𝑥 / 𝑦)))
4442, 43bitr4d 190 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑧 · 𝑦) < (𝑥 · 𝑤) ↔ 𝑁 < 𝑀))
4528, 41, 443orbi123d 1293 . . . . . . . 8 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)) ↔ (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
4618, 45mpbid 146 . . . . . . 7 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
4746ex 114 . . . . . 6 (((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
4847rexlimdvva 2582 . . . . 5 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
496, 48mpd 13 . . . 4 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
5049ex 114 . . 3 (((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑁 = (𝑧 / 𝑤) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
5150rexlimdvva 2582 . 2 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
523, 51mpd 13 1 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3o 962   = wceq 1335  wcel 2128  wrex 2436   class class class wbr 3965  (class class class)co 5824  cc 7730  0cc0 7732   · cmul 7737   < clt 7912   # cap 8456   / cdiv 8545  cn 8833  cz 9167  cq 9528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-po 4256  df-iso 4257  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-n0 9091  df-z 9168  df-q 9529  df-rp 9561
This theorem is referenced by:  qletric  10143  qlelttric  10144  qltnle  10145  qdceq  10146  fimaxq  10701
  Copyright terms: Public domain W3C validator