ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtri3or GIF version

Theorem qtri3or 10178
Description: Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.)
Assertion
Ref Expression
qtri3or ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))

Proof of Theorem qtri3or
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9560 . . . 4 (𝑁 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
21biimpi 119 . . 3 (𝑁 ∈ ℚ → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
32adantl 275 . 2 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
4 elq 9560 . . . . . . 7 (𝑀 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
54biimpi 119 . . . . . 6 (𝑀 ∈ ℚ → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
65ad3antrrr 484 . . . . 5 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
7 simplrl 525 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
8 simplrr 526 . . . . . . . . . . . 12 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → 𝑤 ∈ ℕ)
98ad2antrr 480 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℕ)
109nnzd 9312 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℤ)
117, 10zmulcld 9319 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℤ)
12 simplrl 525 . . . . . . . . . . 11 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → 𝑧 ∈ ℤ)
1312ad2antrr 480 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℤ)
14 simplrr 526 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
1514nnzd 9312 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
1613, 15zmulcld 9319 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑧 · 𝑦) ∈ ℤ)
17 ztri3or 9234 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℤ ∧ (𝑧 · 𝑦) ∈ ℤ) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)))
1811, 16, 17syl2anc 409 . . . . . . . 8 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)))
19 simpllr 524 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑁 = (𝑧 / 𝑤))
2019breq2d 3994 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 / 𝑦) < 𝑁 ↔ (𝑥 / 𝑦) < (𝑧 / 𝑤)))
21 breq1 3985 . . . . . . . . . . 11 (𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁 ↔ (𝑥 / 𝑦) < 𝑁))
2221adantl 275 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 < 𝑁 ↔ (𝑥 / 𝑦) < 𝑁))
237zred 9313 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℝ)
249nnrpd 9630 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℝ+)
2513zred 9313 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℝ)
2614nnrpd 9630 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℝ+)
2723, 24, 25, 26lt2mul2divd 9701 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ↔ (𝑥 / 𝑦) < (𝑧 / 𝑤)))
2820, 22, 273bitr4rd 220 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ↔ 𝑀 < 𝑁))
29 simpr 109 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑀 = (𝑥 / 𝑦))
3029, 19eqeq12d 2180 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 = 𝑁 ↔ (𝑥 / 𝑦) = (𝑧 / 𝑤)))
317zcnd 9314 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
3213zcnd 9314 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℂ)
3314nncnd 8871 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
3414nnap0d 8903 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 # 0)
3533, 34jca 304 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
369nncnd 8871 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℂ)
379nnap0d 8903 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 # 0)
3836, 37jca 304 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑤 ∈ ℂ ∧ 𝑤 # 0))
39 divmuleqap 8613 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑦 ∈ ℂ ∧ 𝑦 # 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0))) → ((𝑥 / 𝑦) = (𝑧 / 𝑤) ↔ (𝑥 · 𝑤) = (𝑧 · 𝑦)))
4031, 32, 35, 38, 39syl22anc 1229 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 / 𝑦) = (𝑧 / 𝑤) ↔ (𝑥 · 𝑤) = (𝑧 · 𝑦)))
4130, 40bitr2d 188 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑧 · 𝑦) ↔ 𝑀 = 𝑁))
4225, 26, 23, 24lt2mul2divd 9701 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑧 · 𝑦) < (𝑥 · 𝑤) ↔ (𝑧 / 𝑤) < (𝑥 / 𝑦)))
4319, 29breq12d 3995 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑁 < 𝑀 ↔ (𝑧 / 𝑤) < (𝑥 / 𝑦)))
4442, 43bitr4d 190 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑧 · 𝑦) < (𝑥 · 𝑤) ↔ 𝑁 < 𝑀))
4528, 41, 443orbi123d 1301 . . . . . . . 8 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)) ↔ (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
4618, 45mpbid 146 . . . . . . 7 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
4746ex 114 . . . . . 6 (((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
4847rexlimdvva 2591 . . . . 5 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
496, 48mpd 13 . . . 4 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
5049ex 114 . . 3 (((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑁 = (𝑧 / 𝑤) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
5150rexlimdvva 2591 . 2 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
523, 51mpd 13 1 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3o 967   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  (class class class)co 5842  cc 7751  0cc0 7753   · cmul 7758   < clt 7933   # cap 8479   / cdiv 8568  cn 8857  cz 9191  cq 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-q 9558  df-rp 9590
This theorem is referenced by:  qletric  10179  qlelttric  10180  qltnle  10181  qdceq  10182  fimaxq  10740
  Copyright terms: Public domain W3C validator