Proof of Theorem reap0
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 109 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
| 2 | | simpr 110 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) |
| 3 | | 0re 8026 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 4 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 < 𝑦 ↔ 𝑧 < 𝑦)) |
| 5 | | equequ1 1726 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) |
| 6 | | breq2 4037 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑦 < 𝑥 ↔ 𝑦 < 𝑧)) |
| 7 | 4, 5, 6 | 3orbi123d 1322 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 < 𝑧))) |
| 8 | | breq2 4037 |
. . . . . . . 8
⊢ (𝑦 = 0 → (𝑧 < 𝑦 ↔ 𝑧 < 0)) |
| 9 | | eqeq2 2206 |
. . . . . . . 8
⊢ (𝑦 = 0 → (𝑧 = 𝑦 ↔ 𝑧 = 0)) |
| 10 | | breq1 4036 |
. . . . . . . 8
⊢ (𝑦 = 0 → (𝑦 < 𝑧 ↔ 0 < 𝑧)) |
| 11 | 8, 9, 10 | 3orbi123d 1322 |
. . . . . . 7
⊢ (𝑦 = 0 → ((𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 < 𝑧) ↔ (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧))) |
| 12 | 7, 11 | rspc2v 2881 |
. . . . . 6
⊢ ((𝑧 ∈ ℝ ∧ 0 ∈
ℝ) → (∀𝑥
∈ ℝ ∀𝑦
∈ ℝ (𝑥 <
𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧))) |
| 13 | 2, 3, 12 | sylancl 413 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧))) |
| 14 | 1, 13 | mpd 13 |
. . . 4
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧)) |
| 15 | | triap 15673 |
. . . . 5
⊢ ((𝑧 ∈ ℝ ∧ 0 ∈
ℝ) → ((𝑧 < 0
∨ 𝑧 = 0 ∨ 0 <
𝑧) ↔
DECID 𝑧 #
0)) |
| 16 | 2, 3, 15 | sylancl 413 |
. . . 4
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → ((𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧) ↔ DECID 𝑧 # 0)) |
| 17 | 14, 16 | mpbid 147 |
. . 3
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → DECID
𝑧 # 0) |
| 18 | 17 | ralrimiva 2570 |
. 2
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑧 ∈ ℝ DECID 𝑧 # 0) |
| 19 | | breq1 4036 |
. . . . . . 7
⊢ (𝑧 = (𝑥 − 𝑦) → (𝑧 # 0 ↔ (𝑥 − 𝑦) # 0)) |
| 20 | 19 | dcbid 839 |
. . . . . 6
⊢ (𝑧 = (𝑥 − 𝑦) → (DECID 𝑧 # 0 ↔ DECID
(𝑥 − 𝑦) # 0)) |
| 21 | | simpl 109 |
. . . . . 6
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ
DECID 𝑧 #
0) |
| 22 | | resubcl 8290 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) |
| 23 | 22 | adantl 277 |
. . . . . 6
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 − 𝑦) ∈ ℝ) |
| 24 | 20, 21, 23 | rspcdva 2873 |
. . . . 5
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID
(𝑥 − 𝑦) # 0) |
| 25 | | simprl 529 |
. . . . . . . 8
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ) |
| 26 | 25 | recnd 8055 |
. . . . . . 7
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ) |
| 27 | | simprr 531 |
. . . . . . . 8
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ) |
| 28 | 27 | recnd 8055 |
. . . . . . 7
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ) |
| 29 | | subap0 8670 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 − 𝑦) # 0 ↔ 𝑥 # 𝑦)) |
| 30 | 26, 28, 29 | syl2anc 411 |
. . . . . 6
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 − 𝑦) # 0 ↔ 𝑥 # 𝑦)) |
| 31 | 30 | dcbid 839 |
. . . . 5
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
(DECID (𝑥
− 𝑦) # 0 ↔
DECID 𝑥 #
𝑦)) |
| 32 | 24, 31 | mpbid 147 |
. . . 4
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID
𝑥 # 𝑦) |
| 33 | | triap 15673 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦)) |
| 34 | 33 | adantl 277 |
. . . 4
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦)) |
| 35 | 32, 34 | mpbird 167 |
. . 3
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
| 36 | 35 | ralrimivva 2579 |
. 2
⊢
(∀𝑧 ∈
ℝ DECID 𝑧 # 0 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
| 37 | 18, 36 | impbii 126 |
1
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℝ DECID 𝑧 # 0) |