Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  reap0 GIF version

Theorem reap0 14090
Description: Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.)
Assertion
Ref Expression
reap0 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℝ DECID 𝑧 # 0)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem reap0
StepHypRef Expression
1 simpl 108 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
2 simpr 109 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
3 0re 7920 . . . . . 6 0 ∈ ℝ
4 breq1 3992 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 < 𝑦𝑧 < 𝑦))
5 equequ1 1705 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
6 breq2 3993 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 < 𝑥𝑦 < 𝑧))
74, 5, 63orbi123d 1306 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑧 < 𝑦𝑧 = 𝑦𝑦 < 𝑧)))
8 breq2 3993 . . . . . . . 8 (𝑦 = 0 → (𝑧 < 𝑦𝑧 < 0))
9 eqeq2 2180 . . . . . . . 8 (𝑦 = 0 → (𝑧 = 𝑦𝑧 = 0))
10 breq1 3992 . . . . . . . 8 (𝑦 = 0 → (𝑦 < 𝑧 ↔ 0 < 𝑧))
118, 9, 103orbi123d 1306 . . . . . . 7 (𝑦 = 0 → ((𝑧 < 𝑦𝑧 = 𝑦𝑦 < 𝑧) ↔ (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧)))
127, 11rspc2v 2847 . . . . . 6 ((𝑧 ∈ ℝ ∧ 0 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧)))
132, 3, 12sylancl 411 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧)))
141, 13mpd 13 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧))
15 triap 14061 . . . . 5 ((𝑧 ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧) ↔ DECID 𝑧 # 0))
162, 3, 15sylancl 411 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → ((𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧) ↔ DECID 𝑧 # 0))
1714, 16mpbid 146 . . 3 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → DECID 𝑧 # 0)
1817ralrimiva 2543 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑧 ∈ ℝ DECID 𝑧 # 0)
19 breq1 3992 . . . . . . 7 (𝑧 = (𝑥𝑦) → (𝑧 # 0 ↔ (𝑥𝑦) # 0))
2019dcbid 833 . . . . . 6 (𝑧 = (𝑥𝑦) → (DECID 𝑧 # 0 ↔ DECID (𝑥𝑦) # 0))
21 simpl 108 . . . . . 6 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ DECID 𝑧 # 0)
22 resubcl 8183 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
2322adantl 275 . . . . . 6 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
2420, 21, 23rspcdva 2839 . . . . 5 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID (𝑥𝑦) # 0)
25 simprl 526 . . . . . . . 8 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
2625recnd 7948 . . . . . . 7 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
27 simprr 527 . . . . . . . 8 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
2827recnd 7948 . . . . . . 7 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
29 subap0 8562 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) # 0 ↔ 𝑥 # 𝑦))
3026, 28, 29syl2anc 409 . . . . . 6 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) # 0 ↔ 𝑥 # 𝑦))
3130dcbid 833 . . . . 5 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (DECID (𝑥𝑦) # 0 ↔ DECID 𝑥 # 𝑦))
3224, 31mpbid 146 . . . 4 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID 𝑥 # 𝑦)
33 triap 14061 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦))
3433adantl 275 . . . 4 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦))
3532, 34mpbird 166 . . 3 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
3635ralrimivva 2552 . 2 (∀𝑧 ∈ ℝ DECID 𝑧 # 0 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
3718, 36impbii 125 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℝ DECID 𝑧 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 829  w3o 972   = wceq 1348  wcel 2141  wral 2448   class class class wbr 3989  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774   < clt 7954  cmin 8090   # cap 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501
This theorem is referenced by:  dcapnconstALT  14093
  Copyright terms: Public domain W3C validator