Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  reap0 GIF version

Theorem reap0 13592
Description: Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.)
Assertion
Ref Expression
reap0 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℝ DECID 𝑧 # 0)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem reap0
StepHypRef Expression
1 simpl 108 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
2 simpr 109 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
3 0re 7861 . . . . . 6 0 ∈ ℝ
4 breq1 3968 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 < 𝑦𝑧 < 𝑦))
5 equequ1 1692 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
6 breq2 3969 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 < 𝑥𝑦 < 𝑧))
74, 5, 63orbi123d 1293 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑧 < 𝑦𝑧 = 𝑦𝑦 < 𝑧)))
8 breq2 3969 . . . . . . . 8 (𝑦 = 0 → (𝑧 < 𝑦𝑧 < 0))
9 eqeq2 2167 . . . . . . . 8 (𝑦 = 0 → (𝑧 = 𝑦𝑧 = 0))
10 breq1 3968 . . . . . . . 8 (𝑦 = 0 → (𝑦 < 𝑧 ↔ 0 < 𝑧))
118, 9, 103orbi123d 1293 . . . . . . 7 (𝑦 = 0 → ((𝑧 < 𝑦𝑧 = 𝑦𝑦 < 𝑧) ↔ (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧)))
127, 11rspc2v 2829 . . . . . 6 ((𝑧 ∈ ℝ ∧ 0 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧)))
132, 3, 12sylancl 410 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧)))
141, 13mpd 13 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧))
15 triap 13563 . . . . 5 ((𝑧 ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧) ↔ DECID 𝑧 # 0))
162, 3, 15sylancl 410 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → ((𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧) ↔ DECID 𝑧 # 0))
1714, 16mpbid 146 . . 3 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → DECID 𝑧 # 0)
1817ralrimiva 2530 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑧 ∈ ℝ DECID 𝑧 # 0)
19 breq1 3968 . . . . . . 7 (𝑧 = (𝑥𝑦) → (𝑧 # 0 ↔ (𝑥𝑦) # 0))
2019dcbid 824 . . . . . 6 (𝑧 = (𝑥𝑦) → (DECID 𝑧 # 0 ↔ DECID (𝑥𝑦) # 0))
21 simpl 108 . . . . . 6 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ DECID 𝑧 # 0)
22 resubcl 8122 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
2322adantl 275 . . . . . 6 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
2420, 21, 23rspcdva 2821 . . . . 5 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID (𝑥𝑦) # 0)
25 simprl 521 . . . . . . . 8 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
2625recnd 7889 . . . . . . 7 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
27 simprr 522 . . . . . . . 8 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
2827recnd 7889 . . . . . . 7 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
29 subap0 8501 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) # 0 ↔ 𝑥 # 𝑦))
3026, 28, 29syl2anc 409 . . . . . 6 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) # 0 ↔ 𝑥 # 𝑦))
3130dcbid 824 . . . . 5 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (DECID (𝑥𝑦) # 0 ↔ DECID 𝑥 # 𝑦))
3224, 31mpbid 146 . . . 4 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID 𝑥 # 𝑦)
33 triap 13563 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦))
3433adantl 275 . . . 4 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦))
3532, 34mpbird 166 . . 3 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
3635ralrimivva 2539 . 2 (∀𝑧 ∈ ℝ DECID 𝑧 # 0 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
3718, 36impbii 125 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℝ DECID 𝑧 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 820  w3o 962   = wceq 1335  wcel 2128  wral 2435   class class class wbr 3965  (class class class)co 5818  cc 7713  cr 7714  0cc0 7715   < clt 7895  cmin 8029   # cap 8439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-iota 5132  df-fun 5169  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-pnf 7897  df-mnf 7898  df-ltxr 7900  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440
This theorem is referenced by:  dcapnconstALT  13595
  Copyright terms: Public domain W3C validator