Proof of Theorem reap0
Step | Hyp | Ref
| Expression |
1 | | simpl 108 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
2 | | simpr 109 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ) |
3 | | 0re 7899 |
. . . . . 6
⊢ 0 ∈
ℝ |
4 | | breq1 3985 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 < 𝑦 ↔ 𝑧 < 𝑦)) |
5 | | equequ1 1700 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑧 = 𝑦)) |
6 | | breq2 3986 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑦 < 𝑥 ↔ 𝑦 < 𝑧)) |
7 | 4, 5, 6 | 3orbi123d 1301 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ (𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 < 𝑧))) |
8 | | breq2 3986 |
. . . . . . . 8
⊢ (𝑦 = 0 → (𝑧 < 𝑦 ↔ 𝑧 < 0)) |
9 | | eqeq2 2175 |
. . . . . . . 8
⊢ (𝑦 = 0 → (𝑧 = 𝑦 ↔ 𝑧 = 0)) |
10 | | breq1 3985 |
. . . . . . . 8
⊢ (𝑦 = 0 → (𝑦 < 𝑧 ↔ 0 < 𝑧)) |
11 | 8, 9, 10 | 3orbi123d 1301 |
. . . . . . 7
⊢ (𝑦 = 0 → ((𝑧 < 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 < 𝑧) ↔ (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧))) |
12 | 7, 11 | rspc2v 2843 |
. . . . . 6
⊢ ((𝑧 ∈ ℝ ∧ 0 ∈
ℝ) → (∀𝑥
∈ ℝ ∀𝑦
∈ ℝ (𝑥 <
𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧))) |
13 | 2, 3, 12 | sylancl 410 |
. . . . 5
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧))) |
14 | 1, 13 | mpd 13 |
. . . 4
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧)) |
15 | | triap 13918 |
. . . . 5
⊢ ((𝑧 ∈ ℝ ∧ 0 ∈
ℝ) → ((𝑧 < 0
∨ 𝑧 = 0 ∨ 0 <
𝑧) ↔
DECID 𝑧 #
0)) |
16 | 2, 3, 15 | sylancl 410 |
. . . 4
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → ((𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧) ↔ DECID 𝑧 # 0)) |
17 | 14, 16 | mpbid 146 |
. . 3
⊢
((∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → DECID
𝑧 # 0) |
18 | 17 | ralrimiva 2539 |
. 2
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑧 ∈ ℝ DECID 𝑧 # 0) |
19 | | breq1 3985 |
. . . . . . 7
⊢ (𝑧 = (𝑥 − 𝑦) → (𝑧 # 0 ↔ (𝑥 − 𝑦) # 0)) |
20 | 19 | dcbid 828 |
. . . . . 6
⊢ (𝑧 = (𝑥 − 𝑦) → (DECID 𝑧 # 0 ↔ DECID
(𝑥 − 𝑦) # 0)) |
21 | | simpl 108 |
. . . . . 6
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ
DECID 𝑧 #
0) |
22 | | resubcl 8162 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) |
23 | 22 | adantl 275 |
. . . . . 6
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 − 𝑦) ∈ ℝ) |
24 | 20, 21, 23 | rspcdva 2835 |
. . . . 5
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID
(𝑥 − 𝑦) # 0) |
25 | | simprl 521 |
. . . . . . . 8
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ) |
26 | 25 | recnd 7927 |
. . . . . . 7
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ) |
27 | | simprr 522 |
. . . . . . . 8
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ) |
28 | 27 | recnd 7927 |
. . . . . . 7
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ) |
29 | | subap0 8541 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 − 𝑦) # 0 ↔ 𝑥 # 𝑦)) |
30 | 26, 28, 29 | syl2anc 409 |
. . . . . 6
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 − 𝑦) # 0 ↔ 𝑥 # 𝑦)) |
31 | 30 | dcbid 828 |
. . . . 5
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) →
(DECID (𝑥
− 𝑦) # 0 ↔
DECID 𝑥 #
𝑦)) |
32 | 24, 31 | mpbid 146 |
. . . 4
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID
𝑥 # 𝑦) |
33 | | triap 13918 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦)) |
34 | 33 | adantl 275 |
. . . 4
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦)) |
35 | 32, 34 | mpbird 166 |
. . 3
⊢
((∀𝑧 ∈
ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
36 | 35 | ralrimivva 2548 |
. 2
⊢
(∀𝑧 ∈
ℝ DECID 𝑧 # 0 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥)) |
37 | 18, 36 | impbii 125 |
1
⊢
(∀𝑥 ∈
ℝ ∀𝑦 ∈
ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℝ DECID 𝑧 # 0) |