Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  reap0 GIF version

Theorem reap0 13947
Description: Real number trichotomy is equivalent to decidability of apartness from zero. (Contributed by Jim Kingdon, 27-Jul-2024.)
Assertion
Ref Expression
reap0 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℝ DECID 𝑧 # 0)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem reap0
StepHypRef Expression
1 simpl 108 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
2 simpr 109 . . . . . 6 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
3 0re 7899 . . . . . 6 0 ∈ ℝ
4 breq1 3985 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 < 𝑦𝑧 < 𝑦))
5 equequ1 1700 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
6 breq2 3986 . . . . . . . 8 (𝑥 = 𝑧 → (𝑦 < 𝑥𝑦 < 𝑧))
74, 5, 63orbi123d 1301 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑧 < 𝑦𝑧 = 𝑦𝑦 < 𝑧)))
8 breq2 3986 . . . . . . . 8 (𝑦 = 0 → (𝑧 < 𝑦𝑧 < 0))
9 eqeq2 2175 . . . . . . . 8 (𝑦 = 0 → (𝑧 = 𝑦𝑧 = 0))
10 breq1 3985 . . . . . . . 8 (𝑦 = 0 → (𝑦 < 𝑧 ↔ 0 < 𝑧))
118, 9, 103orbi123d 1301 . . . . . . 7 (𝑦 = 0 → ((𝑧 < 𝑦𝑧 = 𝑦𝑦 < 𝑧) ↔ (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧)))
127, 11rspc2v 2843 . . . . . 6 ((𝑧 ∈ ℝ ∧ 0 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧)))
132, 3, 12sylancl 410 . . . . 5 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧)))
141, 13mpd 13 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → (𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧))
15 triap 13918 . . . . 5 ((𝑧 ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧) ↔ DECID 𝑧 # 0))
162, 3, 15sylancl 410 . . . 4 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → ((𝑧 < 0 ∨ 𝑧 = 0 ∨ 0 < 𝑧) ↔ DECID 𝑧 # 0))
1714, 16mpbid 146 . . 3 ((∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ∧ 𝑧 ∈ ℝ) → DECID 𝑧 # 0)
1817ralrimiva 2539 . 2 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑧 ∈ ℝ DECID 𝑧 # 0)
19 breq1 3985 . . . . . . 7 (𝑧 = (𝑥𝑦) → (𝑧 # 0 ↔ (𝑥𝑦) # 0))
2019dcbid 828 . . . . . 6 (𝑧 = (𝑥𝑦) → (DECID 𝑧 # 0 ↔ DECID (𝑥𝑦) # 0))
21 simpl 108 . . . . . 6 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ∀𝑧 ∈ ℝ DECID 𝑧 # 0)
22 resubcl 8162 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
2322adantl 275 . . . . . 6 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
2420, 21, 23rspcdva 2835 . . . . 5 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID (𝑥𝑦) # 0)
25 simprl 521 . . . . . . . 8 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℝ)
2625recnd 7927 . . . . . . 7 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑥 ∈ ℂ)
27 simprr 522 . . . . . . . 8 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℝ)
2827recnd 7927 . . . . . . 7 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → 𝑦 ∈ ℂ)
29 subap0 8541 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) # 0 ↔ 𝑥 # 𝑦))
3026, 28, 29syl2anc 409 . . . . . 6 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥𝑦) # 0 ↔ 𝑥 # 𝑦))
3130dcbid 828 . . . . 5 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (DECID (𝑥𝑦) # 0 ↔ DECID 𝑥 # 𝑦))
3224, 31mpbid 146 . . . 4 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → DECID 𝑥 # 𝑦)
33 triap 13918 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦))
3433adantl 275 . . . 4 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ DECID 𝑥 # 𝑦))
3532, 34mpbird 166 . . 3 ((∀𝑧 ∈ ℝ DECID 𝑧 # 0 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
3635ralrimivva 2548 . 2 (∀𝑧 ∈ ℝ DECID 𝑧 # 0 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
3718, 36impbii 125 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ∀𝑧 ∈ ℝ DECID 𝑧 # 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 824  w3o 967   = wceq 1343  wcel 2136  wral 2444   class class class wbr 3982  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753   < clt 7933  cmin 8069   # cap 8479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-ltxr 7938  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480
This theorem is referenced by:  dcapnconstALT  13950
  Copyright terms: Public domain W3C validator