![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prltlu | GIF version |
Description: An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.) |
Ref | Expression |
---|---|
prltlu | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐵 <Q 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 951 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ 𝑈) | |
2 | eleq1 2162 | . . . . . . 7 ⊢ (𝑞 = 𝐶 → (𝑞 ∈ 𝐿 ↔ 𝐶 ∈ 𝐿)) | |
3 | eleq1 2162 | . . . . . . 7 ⊢ (𝑞 = 𝐶 → (𝑞 ∈ 𝑈 ↔ 𝐶 ∈ 𝑈)) | |
4 | 2, 3 | anbi12d 460 | . . . . . 6 ⊢ (𝑞 = 𝐶 → ((𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈))) |
5 | 4 | notbid 633 | . . . . 5 ⊢ (𝑞 = 𝐶 → (¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ ¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈))) |
6 | elinp 7183 | . . . . . . 7 ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))))) | |
7 | simpr2 956 | . . . . . . 7 ⊢ ((((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) | |
8 | 6, 7 | sylbi 120 | . . . . . 6 ⊢ (〈𝐿, 𝑈〉 ∈ P → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
9 | 8 | 3ad2ant1 970 | . . . . 5 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
10 | elprnqu 7191 | . . . . . 6 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ Q) | |
11 | 10 | 3adant2 968 | . . . . 5 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ Q) |
12 | 5, 9, 11 | rspcdva 2749 | . . . 4 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈)) |
13 | ancom 264 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) | |
14 | 13 | notbii 635 | . . . . 5 ⊢ (¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ ¬ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) |
15 | imnan 665 | . . . . 5 ⊢ ((𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿) ↔ ¬ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) | |
16 | 14, 15 | bitr4i 186 | . . . 4 ⊢ (¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ (𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿)) |
17 | 12, 16 | sylib 121 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿)) |
18 | 1, 17 | mpd 13 | . 2 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ¬ 𝐶 ∈ 𝐿) |
19 | 3simpa 946 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿)) | |
20 | prubl 7195 | . . 3 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <Q 𝐶)) | |
21 | 19, 11, 20 | syl2anc 406 | . 2 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <Q 𝐶)) |
22 | 18, 21 | mpd 13 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐵 <Q 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 670 ∧ w3a 930 = wceq 1299 ∈ wcel 1448 ∀wral 2375 ∃wrex 2376 ⊆ wss 3021 〈cop 3477 class class class wbr 3875 Qcnq 6989 <Q cltq 6994 Pcnp 7000 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-eprel 4149 df-id 4153 df-po 4156 df-iso 4157 df-iord 4226 df-on 4228 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-recs 6132 df-irdg 6197 df-oadd 6247 df-omul 6248 df-er 6359 df-ec 6361 df-qs 6365 df-ni 7013 df-mi 7015 df-lti 7016 df-enq 7056 df-nqqs 7057 df-ltnqqs 7062 df-inp 7175 |
This theorem is referenced by: genpdisj 7232 prmuloc 7275 ltprordil 7298 ltpopr 7304 ltexprlemopu 7312 ltexprlemdisj 7315 ltexprlemfl 7318 ltexprlemfu 7320 ltexprlemru 7321 recexprlemdisj 7339 recexprlemss1l 7344 recexprlemss1u 7345 |
Copyright terms: Public domain | W3C validator |