ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prltlu GIF version

Theorem prltlu 7307
Description: An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.)
Assertion
Ref Expression
prltlu ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → 𝐵 <Q 𝐶)

Proof of Theorem prltlu
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 983 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → 𝐶𝑈)
2 eleq1 2202 . . . . . . 7 (𝑞 = 𝐶 → (𝑞𝐿𝐶𝐿))
3 eleq1 2202 . . . . . . 7 (𝑞 = 𝐶 → (𝑞𝑈𝐶𝑈))
42, 3anbi12d 464 . . . . . 6 (𝑞 = 𝐶 → ((𝑞𝐿𝑞𝑈) ↔ (𝐶𝐿𝐶𝑈)))
54notbid 656 . . . . 5 (𝑞 = 𝐶 → (¬ (𝑞𝐿𝑞𝑈) ↔ ¬ (𝐶𝐿𝐶𝑈)))
6 elinp 7294 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P ↔ (((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))))
7 simpr2 988 . . . . . . 7 ((((𝐿Q𝑈Q) ∧ (∃𝑞Q 𝑞𝐿 ∧ ∃𝑟Q 𝑟𝑈)) ∧ ((∀𝑞Q (𝑞𝐿 ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟𝐿)) ∧ ∀𝑟Q (𝑟𝑈 ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞𝑈))) ∧ ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈) ∧ ∀𝑞Q𝑟Q (𝑞 <Q 𝑟 → (𝑞𝐿𝑟𝑈)))) → ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈))
86, 7sylbi 120 . . . . . 6 (⟨𝐿, 𝑈⟩ ∈ P → ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈))
983ad2ant1 1002 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → ∀𝑞Q ¬ (𝑞𝐿𝑞𝑈))
10 elprnqu 7302 . . . . . 6 ((⟨𝐿, 𝑈⟩ ∈ P𝐶𝑈) → 𝐶Q)
11103adant2 1000 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → 𝐶Q)
125, 9, 11rspcdva 2794 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → ¬ (𝐶𝐿𝐶𝑈))
13 ancom 264 . . . . . 6 ((𝐶𝐿𝐶𝑈) ↔ (𝐶𝑈𝐶𝐿))
1413notbii 657 . . . . 5 (¬ (𝐶𝐿𝐶𝑈) ↔ ¬ (𝐶𝑈𝐶𝐿))
15 imnan 679 . . . . 5 ((𝐶𝑈 → ¬ 𝐶𝐿) ↔ ¬ (𝐶𝑈𝐶𝐿))
1614, 15bitr4i 186 . . . 4 (¬ (𝐶𝐿𝐶𝑈) ↔ (𝐶𝑈 → ¬ 𝐶𝐿))
1712, 16sylib 121 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → (𝐶𝑈 → ¬ 𝐶𝐿))
181, 17mpd 13 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → ¬ 𝐶𝐿)
19 3simpa 978 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → (⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿))
20 prubl 7306 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿) ∧ 𝐶Q) → (¬ 𝐶𝐿𝐵 <Q 𝐶))
2119, 11, 20syl2anc 408 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → (¬ 𝐶𝐿𝐵 <Q 𝐶))
2218, 21mpd 13 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐵𝐿𝐶𝑈) → 𝐵 <Q 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417  wss 3071  cop 3530   class class class wbr 3929  Qcnq 7100   <Q cltq 7105  Pcnp 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7124  df-mi 7126  df-lti 7127  df-enq 7167  df-nqqs 7168  df-ltnqqs 7173  df-inp 7286
This theorem is referenced by:  genpdisj  7343  prmuloc  7386  ltprordil  7409  ltpopr  7415  ltexprlemopu  7423  ltexprlemdisj  7426  ltexprlemfl  7429  ltexprlemfu  7431  ltexprlemru  7432  recexprlemdisj  7450  recexprlemss1l  7455  recexprlemss1u  7456
  Copyright terms: Public domain W3C validator