![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prltlu | GIF version |
Description: An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.) |
Ref | Expression |
---|---|
prltlu | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐵 <Q 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1001 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ 𝑈) | |
2 | eleq1 2256 | . . . . . . 7 ⊢ (𝑞 = 𝐶 → (𝑞 ∈ 𝐿 ↔ 𝐶 ∈ 𝐿)) | |
3 | eleq1 2256 | . . . . . . 7 ⊢ (𝑞 = 𝐶 → (𝑞 ∈ 𝑈 ↔ 𝐶 ∈ 𝑈)) | |
4 | 2, 3 | anbi12d 473 | . . . . . 6 ⊢ (𝑞 = 𝐶 → ((𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈))) |
5 | 4 | notbid 668 | . . . . 5 ⊢ (𝑞 = 𝐶 → (¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ ¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈))) |
6 | elinp 7534 | . . . . . . 7 ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))))) | |
7 | simpr2 1006 | . . . . . . 7 ⊢ ((((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) | |
8 | 6, 7 | sylbi 121 | . . . . . 6 ⊢ (〈𝐿, 𝑈〉 ∈ P → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
9 | 8 | 3ad2ant1 1020 | . . . . 5 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
10 | elprnqu 7542 | . . . . . 6 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ Q) | |
11 | 10 | 3adant2 1018 | . . . . 5 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ Q) |
12 | 5, 9, 11 | rspcdva 2869 | . . . 4 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈)) |
13 | ancom 266 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) | |
14 | 13 | notbii 669 | . . . . 5 ⊢ (¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ ¬ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) |
15 | imnan 691 | . . . . 5 ⊢ ((𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿) ↔ ¬ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) | |
16 | 14, 15 | bitr4i 187 | . . . 4 ⊢ (¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ (𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿)) |
17 | 12, 16 | sylib 122 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿)) |
18 | 1, 17 | mpd 13 | . 2 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ¬ 𝐶 ∈ 𝐿) |
19 | 3simpa 996 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿)) | |
20 | prubl 7546 | . . 3 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <Q 𝐶)) | |
21 | 19, 11, 20 | syl2anc 411 | . 2 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <Q 𝐶)) |
22 | 18, 21 | mpd 13 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐵 <Q 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ⊆ wss 3153 〈cop 3621 class class class wbr 4029 Qcnq 7340 <Q cltq 7345 Pcnp 7351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4320 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-mi 7366 df-lti 7367 df-enq 7407 df-nqqs 7408 df-ltnqqs 7413 df-inp 7526 |
This theorem is referenced by: genpdisj 7583 prmuloc 7626 ltprordil 7649 ltpopr 7655 ltexprlemopu 7663 ltexprlemdisj 7666 ltexprlemfl 7669 ltexprlemfu 7671 ltexprlemru 7672 recexprlemdisj 7690 recexprlemss1l 7695 recexprlemss1u 7696 |
Copyright terms: Public domain | W3C validator |