| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prltlu | GIF version | ||
| Description: An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.) |
| Ref | Expression |
|---|---|
| prltlu | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐵 <Q 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1023 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ 𝑈) | |
| 2 | eleq1 2292 | . . . . . . 7 ⊢ (𝑞 = 𝐶 → (𝑞 ∈ 𝐿 ↔ 𝐶 ∈ 𝐿)) | |
| 3 | eleq1 2292 | . . . . . . 7 ⊢ (𝑞 = 𝐶 → (𝑞 ∈ 𝑈 ↔ 𝐶 ∈ 𝑈)) | |
| 4 | 2, 3 | anbi12d 473 | . . . . . 6 ⊢ (𝑞 = 𝐶 → ((𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈))) |
| 5 | 4 | notbid 671 | . . . . 5 ⊢ (𝑞 = 𝐶 → (¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ ¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈))) |
| 6 | elinp 7657 | . . . . . . 7 ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))))) | |
| 7 | simpr2 1028 | . . . . . . 7 ⊢ ((((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) | |
| 8 | 6, 7 | sylbi 121 | . . . . . 6 ⊢ (〈𝐿, 𝑈〉 ∈ P → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
| 9 | 8 | 3ad2ant1 1042 | . . . . 5 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
| 10 | elprnqu 7665 | . . . . . 6 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ Q) | |
| 11 | 10 | 3adant2 1040 | . . . . 5 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ Q) |
| 12 | 5, 9, 11 | rspcdva 2912 | . . . 4 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈)) |
| 13 | ancom 266 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) | |
| 14 | 13 | notbii 672 | . . . . 5 ⊢ (¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ ¬ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) |
| 15 | imnan 694 | . . . . 5 ⊢ ((𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿) ↔ ¬ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) | |
| 16 | 14, 15 | bitr4i 187 | . . . 4 ⊢ (¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ (𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿)) |
| 17 | 12, 16 | sylib 122 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿)) |
| 18 | 1, 17 | mpd 13 | . 2 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ¬ 𝐶 ∈ 𝐿) |
| 19 | 3simpa 1018 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿)) | |
| 20 | prubl 7669 | . . 3 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <Q 𝐶)) | |
| 21 | 19, 11, 20 | syl2anc 411 | . 2 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <Q 𝐶)) |
| 22 | 18, 21 | mpd 13 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐵 <Q 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ⊆ wss 3197 〈cop 3669 class class class wbr 4082 Qcnq 7463 <Q cltq 7468 Pcnp 7474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-mi 7489 df-lti 7490 df-enq 7530 df-nqqs 7531 df-ltnqqs 7536 df-inp 7649 |
| This theorem is referenced by: genpdisj 7706 prmuloc 7749 ltprordil 7772 ltpopr 7778 ltexprlemopu 7786 ltexprlemdisj 7789 ltexprlemfl 7792 ltexprlemfu 7794 ltexprlemru 7795 recexprlemdisj 7813 recexprlemss1l 7818 recexprlemss1u 7819 |
| Copyright terms: Public domain | W3C validator |