Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prltlu | GIF version |
Description: An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.) |
Ref | Expression |
---|---|
prltlu | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐵 <Q 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 994 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ 𝑈) | |
2 | eleq1 2233 | . . . . . . 7 ⊢ (𝑞 = 𝐶 → (𝑞 ∈ 𝐿 ↔ 𝐶 ∈ 𝐿)) | |
3 | eleq1 2233 | . . . . . . 7 ⊢ (𝑞 = 𝐶 → (𝑞 ∈ 𝑈 ↔ 𝐶 ∈ 𝑈)) | |
4 | 2, 3 | anbi12d 470 | . . . . . 6 ⊢ (𝑞 = 𝐶 → ((𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈))) |
5 | 4 | notbid 662 | . . . . 5 ⊢ (𝑞 = 𝐶 → (¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ ¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈))) |
6 | elinp 7436 | . . . . . . 7 ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))))) | |
7 | simpr2 999 | . . . . . . 7 ⊢ ((((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) | |
8 | 6, 7 | sylbi 120 | . . . . . 6 ⊢ (〈𝐿, 𝑈〉 ∈ P → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
9 | 8 | 3ad2ant1 1013 | . . . . 5 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
10 | elprnqu 7444 | . . . . . 6 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ Q) | |
11 | 10 | 3adant2 1011 | . . . . 5 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ Q) |
12 | 5, 9, 11 | rspcdva 2839 | . . . 4 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈)) |
13 | ancom 264 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) | |
14 | 13 | notbii 663 | . . . . 5 ⊢ (¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ ¬ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) |
15 | imnan 685 | . . . . 5 ⊢ ((𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿) ↔ ¬ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) | |
16 | 14, 15 | bitr4i 186 | . . . 4 ⊢ (¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ (𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿)) |
17 | 12, 16 | sylib 121 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿)) |
18 | 1, 17 | mpd 13 | . 2 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ¬ 𝐶 ∈ 𝐿) |
19 | 3simpa 989 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿)) | |
20 | prubl 7448 | . . 3 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <Q 𝐶)) | |
21 | 19, 11, 20 | syl2anc 409 | . 2 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <Q 𝐶)) |
22 | 18, 21 | mpd 13 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐵 <Q 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ⊆ wss 3121 〈cop 3586 class class class wbr 3989 Qcnq 7242 <Q cltq 7247 Pcnp 7253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-mi 7268 df-lti 7269 df-enq 7309 df-nqqs 7310 df-ltnqqs 7315 df-inp 7428 |
This theorem is referenced by: genpdisj 7485 prmuloc 7528 ltprordil 7551 ltpopr 7557 ltexprlemopu 7565 ltexprlemdisj 7568 ltexprlemfl 7571 ltexprlemfu 7573 ltexprlemru 7574 recexprlemdisj 7592 recexprlemss1l 7597 recexprlemss1u 7598 |
Copyright terms: Public domain | W3C validator |