| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prltlu | GIF version | ||
| Description: An element of a lower cut is less than an element of the corresponding upper cut. (Contributed by Jim Kingdon, 15-Oct-2019.) |
| Ref | Expression |
|---|---|
| prltlu | ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐵 <Q 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1001 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ 𝑈) | |
| 2 | eleq1 2259 | . . . . . . 7 ⊢ (𝑞 = 𝐶 → (𝑞 ∈ 𝐿 ↔ 𝐶 ∈ 𝐿)) | |
| 3 | eleq1 2259 | . . . . . . 7 ⊢ (𝑞 = 𝐶 → (𝑞 ∈ 𝑈 ↔ 𝐶 ∈ 𝑈)) | |
| 4 | 2, 3 | anbi12d 473 | . . . . . 6 ⊢ (𝑞 = 𝐶 → ((𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈))) |
| 5 | 4 | notbid 668 | . . . . 5 ⊢ (𝑞 = 𝐶 → (¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ↔ ¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈))) |
| 6 | elinp 7541 | . . . . . . 7 ⊢ (〈𝐿, 𝑈〉 ∈ P ↔ (((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))))) | |
| 7 | simpr2 1006 | . . . . . . 7 ⊢ ((((𝐿 ⊆ Q ∧ 𝑈 ⊆ Q) ∧ (∃𝑞 ∈ Q 𝑞 ∈ 𝐿 ∧ ∃𝑟 ∈ Q 𝑟 ∈ 𝑈)) ∧ ((∀𝑞 ∈ Q (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ 𝐿)) ∧ ∀𝑟 ∈ Q (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ 𝑈))) ∧ ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈) ∧ ∀𝑞 ∈ Q ∀𝑟 ∈ Q (𝑞 <Q 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈)))) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) | |
| 8 | 6, 7 | sylbi 121 | . . . . . 6 ⊢ (〈𝐿, 𝑈〉 ∈ P → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
| 9 | 8 | 3ad2ant1 1020 | . . . . 5 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ∀𝑞 ∈ Q ¬ (𝑞 ∈ 𝐿 ∧ 𝑞 ∈ 𝑈)) |
| 10 | elprnqu 7549 | . . . . . 6 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ Q) | |
| 11 | 10 | 3adant2 1018 | . . . . 5 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐶 ∈ Q) |
| 12 | 5, 9, 11 | rspcdva 2873 | . . . 4 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈)) |
| 13 | ancom 266 | . . . . . 6 ⊢ ((𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) | |
| 14 | 13 | notbii 669 | . . . . 5 ⊢ (¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ ¬ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) |
| 15 | imnan 691 | . . . . 5 ⊢ ((𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿) ↔ ¬ (𝐶 ∈ 𝑈 ∧ 𝐶 ∈ 𝐿)) | |
| 16 | 14, 15 | bitr4i 187 | . . . 4 ⊢ (¬ (𝐶 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) ↔ (𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿)) |
| 17 | 12, 16 | sylib 122 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (𝐶 ∈ 𝑈 → ¬ 𝐶 ∈ 𝐿)) |
| 18 | 1, 17 | mpd 13 | . 2 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → ¬ 𝐶 ∈ 𝐿) |
| 19 | 3simpa 996 | . . 3 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿)) | |
| 20 | prubl 7553 | . . 3 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <Q 𝐶)) | |
| 21 | 19, 11, 20 | syl2anc 411 | . 2 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → (¬ 𝐶 ∈ 𝐿 → 𝐵 <Q 𝐶)) |
| 22 | 18, 21 | mpd 13 | 1 ⊢ ((〈𝐿, 𝑈〉 ∈ P ∧ 𝐵 ∈ 𝐿 ∧ 𝐶 ∈ 𝑈) → 𝐵 <Q 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ⊆ wss 3157 〈cop 3625 class class class wbr 4033 Qcnq 7347 <Q cltq 7352 Pcnp 7358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-mi 7373 df-lti 7374 df-enq 7414 df-nqqs 7415 df-ltnqqs 7420 df-inp 7533 |
| This theorem is referenced by: genpdisj 7590 prmuloc 7633 ltprordil 7656 ltpopr 7662 ltexprlemopu 7670 ltexprlemdisj 7673 ltexprlemfl 7676 ltexprlemfu 7678 ltexprlemru 7679 recexprlemdisj 7697 recexprlemss1l 7702 recexprlemss1u 7703 |
| Copyright terms: Public domain | W3C validator |