| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sumtp | GIF version | ||
| Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.) |
| Ref | Expression |
|---|---|
| sumtp.e | ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) |
| sumtp.f | ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) |
| sumtp.g | ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) |
| sumtp.c | ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)) |
| sumtp.v | ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) |
| sumtp.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| sumtp.2 | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
| sumtp.3 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| sumtp | ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumtp.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 𝐶) | |
| 2 | 1 | necomd 2463 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐴) |
| 3 | sumtp.3 | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 4 | 3 | necomd 2463 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 5 | 2, 4 | nelprd 3660 | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ {𝐴, 𝐵}) |
| 6 | disjsn 3696 | . . . 4 ⊢ (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ ¬ 𝐶 ∈ {𝐴, 𝐵}) | |
| 7 | 5, 6 | sylibr 134 | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅) |
| 8 | df-tp 3642 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 9 | 8 | a1i 9 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})) |
| 10 | sumtp.v | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋)) | |
| 11 | 10 | simp1d 1012 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 12 | 10 | simp2d 1013 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 13 | 10 | simp3d 1014 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| 14 | sumtp.1 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 15 | 11, 12, 13, 14, 1, 3 | tpfidisj 7033 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin) |
| 16 | sumtp.c | . . . . 5 ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ)) | |
| 17 | sumtp.e | . . . . . . . 8 ⊢ (𝑘 = 𝐴 → 𝐷 = 𝐸) | |
| 18 | 17 | eleq1d 2275 | . . . . . . 7 ⊢ (𝑘 = 𝐴 → (𝐷 ∈ ℂ ↔ 𝐸 ∈ ℂ)) |
| 19 | sumtp.f | . . . . . . . 8 ⊢ (𝑘 = 𝐵 → 𝐷 = 𝐹) | |
| 20 | 19 | eleq1d 2275 | . . . . . . 7 ⊢ (𝑘 = 𝐵 → (𝐷 ∈ ℂ ↔ 𝐹 ∈ ℂ)) |
| 21 | sumtp.g | . . . . . . . 8 ⊢ (𝑘 = 𝐶 → 𝐷 = 𝐺) | |
| 22 | 21 | eleq1d 2275 | . . . . . . 7 ⊢ (𝑘 = 𝐶 → (𝐷 ∈ ℂ ↔ 𝐺 ∈ ℂ)) |
| 23 | 18, 20, 22 | raltpg 3687 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))) |
| 24 | 10, 23 | syl 14 | . . . . 5 ⊢ (𝜑 → (∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ ↔ (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ))) |
| 25 | 16, 24 | mpbird 167 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 ∈ ℂ) |
| 26 | 25 | r19.21bi 2595 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ) |
| 27 | 7, 9, 15, 26 | fsumsplit 11762 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷)) |
| 28 | 3simpa 997 | . . . . 5 ⊢ ((𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ ∧ 𝐺 ∈ ℂ) → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) | |
| 29 | 16, 28 | syl 14 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) |
| 30 | 3simpa 997 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) | |
| 31 | 10, 30 | syl 14 | . . . 4 ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) |
| 32 | 17, 19, 29, 31, 14 | sumpr 11768 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 + 𝐹)) |
| 33 | 16 | simp3d 1014 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ ℂ) |
| 34 | 21 | sumsn 11766 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐺 ∈ ℂ) → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺) |
| 35 | 13, 33, 34 | syl2anc 411 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐶}𝐷 = 𝐺) |
| 36 | 32, 35 | oveq12d 5969 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ {𝐴, 𝐵}𝐷 + Σ𝑘 ∈ {𝐶}𝐷) = ((𝐸 + 𝐹) + 𝐺)) |
| 37 | 27, 36 | eqtrd 2239 | 1 ⊢ (𝜑 → Σ𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 + 𝐹) + 𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∀wral 2485 ∪ cun 3165 ∩ cin 3166 ∅c0 3461 {csn 3634 {cpr 3635 {ctp 3636 (class class class)co 5951 ℂcc 7930 + caddc 7935 Σcsu 11708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-oadd 6513 df-er 6627 df-en 6835 df-dom 6836 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-exp 10691 df-ihash 10928 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |