ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opm GIF version

Theorem opm 4278
Description: An ordered pair is inhabited iff the arguments are sets. (Contributed by Jim Kingdon, 21-Sep-2018.)
Assertion
Ref Expression
opm (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem opm
StepHypRef Expression
1 df-op 3642 . . . . 5 𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
21eleq2i 2272 . . . 4 (𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝑥 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})})
32exbii 1628 . . 3 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})})
4 abid 2193 . . . 4 (𝑥 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
54exbii 1628 . . 3 (∃𝑥 𝑥 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ↔ ∃𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
63, 5bitri 184 . 2 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ ∃𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
7 19.42v 1930 . . 3 (∃𝑥((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
8 df-3an 983 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
98exbii 1628 . . 3 (∃𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ∃𝑥((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
10 df-3an 983 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
117, 9, 103bitr4ri 213 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ∃𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
12 3simpa 997 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
13 id 19 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
14 snexg 4228 . . . . . 6 (𝐴 ∈ V → {𝐴} ∈ V)
1514adantr 276 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴} ∈ V)
16 prmg 3754 . . . . 5 ({𝐴} ∈ V → ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})
1715, 16syl 14 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})
1813, 17, 10sylanbrc 417 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
1912, 18impbii 126 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
206, 11, 193bitr2i 208 1 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3a 981  wex 1515  wcel 2176  {cab 2191  Vcvv 2772  {csn 3633  {cpr 3634  cop 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642
This theorem is referenced by:  opnzi  4279  opeqex  4294  funopsn  5762  cnm  7945  setsfun0  12868
  Copyright terms: Public domain W3C validator