Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  opm GIF version

Theorem opm 4165
 Description: An ordered pair is inhabited iff the arguments are sets. (Contributed by Jim Kingdon, 21-Sep-2018.)
Assertion
Ref Expression
opm (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem opm
StepHypRef Expression
1 df-op 3542 . . . . 5 𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
21eleq2i 2207 . . . 4 (𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝑥 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})})
32exbii 1585 . . 3 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ ∃𝑥 𝑥 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})})
4 abid 2128 . . . 4 (𝑥 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
54exbii 1585 . . 3 (∃𝑥 𝑥 ∈ {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} ↔ ∃𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
63, 5bitri 183 . 2 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ ∃𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
7 19.42v 1879 . . 3 (∃𝑥((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
8 df-3an 965 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
98exbii 1585 . . 3 (∃𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ∃𝑥((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
10 df-3an 965 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
117, 9, 103bitr4ri 212 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ ∃𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
12 3simpa 979 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
13 id 19 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
14 snexg 4117 . . . . . 6 (𝐴 ∈ V → {𝐴} ∈ V)
1514adantr 274 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴} ∈ V)
16 prmg 3653 . . . . 5 ({𝐴} ∈ V → ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})
1715, 16syl 14 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})
1813, 17, 10sylanbrc 414 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}))
1912, 18impbii 125 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ ∃𝑥 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}}) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
206, 11, 193bitr2i 207 1 (∃𝑥 𝑥 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   ↔ wb 104   ∧ w3a 963  ∃wex 1469   ∈ wcel 1481  {cab 2126  Vcvv 2690  {csn 3533  {cpr 3534  ⟨cop 3536 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2692  df-un 3081  df-in 3083  df-ss 3090  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542 This theorem is referenced by:  opnzi  4166  opeqex  4180  cnm  7684  setsfun0  12054
 Copyright terms: Public domain W3C validator