ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfplpq2 GIF version

Theorem dfplpq2 7487
Description: Alternate definition of pre-addition on positive fractions. (Contributed by Jim Kingdon, 12-Sep-2019.)
Assertion
Ref Expression
dfplpq2 +pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩))}
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑓

Proof of Theorem dfplpq2
StepHypRef Expression
1 df-mpo 5962 . 2 (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ 𝑧 = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)}
2 df-plpq 7477 . 2 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
3 1st2nd2 6274 . . . . . . . . . 10 (𝑥 ∈ (N × N) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
43eqeq1d 2215 . . . . . . . . 9 (𝑥 ∈ (N × N) → (𝑥 = ⟨𝑤, 𝑣⟩ ↔ ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩))
5 1st2nd2 6274 . . . . . . . . . 10 (𝑦 ∈ (N × N) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
65eqeq1d 2215 . . . . . . . . 9 (𝑦 ∈ (N × N) → (𝑦 = ⟨𝑢, 𝑓⟩ ↔ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩))
74, 6bi2anan9 606 . . . . . . . 8 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → ((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ↔ (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩)))
87anbi1d 465 . . . . . . 7 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩) ↔ ((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩)))
9 xp1st 6264 . . . . . . . . . . . . . 14 (𝑦 ∈ (N × N) → (1st𝑦) ∈ N)
109ad2antlr 489 . . . . . . . . . . . . 13 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → (1st𝑦) ∈ N)
117biimpa 296 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩))
1211simprd 114 . . . . . . . . . . . . . 14 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩)
13 vex 2776 . . . . . . . . . . . . . . . . 17 𝑢 ∈ V
14 vex 2776 . . . . . . . . . . . . . . . . 17 𝑓 ∈ V
1513, 14opth2 4292 . . . . . . . . . . . . . . . 16 (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩ ↔ ((1st𝑦) = 𝑢 ∧ (2nd𝑦) = 𝑓))
1615simplbi 274 . . . . . . . . . . . . . . 15 (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩ → (1st𝑦) = 𝑢)
1716eleq1d 2275 . . . . . . . . . . . . . 14 (⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩ → ((1st𝑦) ∈ N𝑢N))
1812, 17syl 14 . . . . . . . . . . . . 13 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → ((1st𝑦) ∈ N𝑢N))
1910, 18mpbid 147 . . . . . . . . . . . 12 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → 𝑢N)
20 xp2nd 6265 . . . . . . . . . . . . . 14 (𝑥 ∈ (N × N) → (2nd𝑥) ∈ N)
2120ad2antrr 488 . . . . . . . . . . . . 13 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → (2nd𝑥) ∈ N)
2211simpld 112 . . . . . . . . . . . . . 14 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩)
23 vex 2776 . . . . . . . . . . . . . . . . 17 𝑤 ∈ V
24 vex 2776 . . . . . . . . . . . . . . . . 17 𝑣 ∈ V
2523, 24opth2 4292 . . . . . . . . . . . . . . . 16 (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ↔ ((1st𝑥) = 𝑤 ∧ (2nd𝑥) = 𝑣))
2625simprbi 275 . . . . . . . . . . . . . . 15 (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ → (2nd𝑥) = 𝑣)
2726eleq1d 2275 . . . . . . . . . . . . . 14 (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ → ((2nd𝑥) ∈ N𝑣N))
2822, 27syl 14 . . . . . . . . . . . . 13 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → ((2nd𝑥) ∈ N𝑣N))
2921, 28mpbid 147 . . . . . . . . . . . 12 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → 𝑣N)
30 mulcompig 7464 . . . . . . . . . . . 12 ((𝑢N𝑣N) → (𝑢 ·N 𝑣) = (𝑣 ·N 𝑢))
3119, 29, 30syl2anc 411 . . . . . . . . . . 11 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → (𝑢 ·N 𝑣) = (𝑣 ·N 𝑢))
3231oveq2d 5973 . . . . . . . . . 10 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → ((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)) = ((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)))
3332opeq1d 3831 . . . . . . . . 9 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩ = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩)
3433eqeq2d 2218 . . . . . . . 8 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ (𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩)) → (𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩ ↔ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩))
3534pm5.32da 452 . . . . . . 7 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩) ↔ ((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩)))
368, 35bitr3d 190 . . . . . 6 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩) ↔ ((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩)))
37364exbidv 1894 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (∃𝑤𝑣𝑢𝑓((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩) ↔ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩)))
38 xp1st 6264 . . . . . . 7 (𝑥 ∈ (N × N) → (1st𝑥) ∈ N)
3938, 20jca 306 . . . . . 6 (𝑥 ∈ (N × N) → ((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N))
40 xp2nd 6265 . . . . . . 7 (𝑦 ∈ (N × N) → (2nd𝑦) ∈ N)
419, 40jca 306 . . . . . 6 (𝑦 ∈ (N × N) → ((1st𝑦) ∈ N ∧ (2nd𝑦) ∈ N))
42 simpll 527 . . . . . . . . . . 11 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑤 = (1st𝑥))
43 simprr 531 . . . . . . . . . . 11 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑓 = (2nd𝑦))
4442, 43oveq12d 5975 . . . . . . . . . 10 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → (𝑤 ·N 𝑓) = ((1st𝑥) ·N (2nd𝑦)))
45 simprl 529 . . . . . . . . . . 11 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑢 = (1st𝑦))
46 simplr 528 . . . . . . . . . . 11 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → 𝑣 = (2nd𝑥))
4745, 46oveq12d 5975 . . . . . . . . . 10 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → (𝑢 ·N 𝑣) = ((1st𝑦) ·N (2nd𝑥)))
4844, 47oveq12d 5975 . . . . . . . . 9 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → ((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)) = (((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))))
4946, 43oveq12d 5975 . . . . . . . . 9 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → (𝑣 ·N 𝑓) = ((2nd𝑥) ·N (2nd𝑦)))
5048, 49opeq12d 3833 . . . . . . . 8 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩ = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
5150eqeq2d 2218 . . . . . . 7 (((𝑤 = (1st𝑥) ∧ 𝑣 = (2nd𝑥)) ∧ (𝑢 = (1st𝑦) ∧ 𝑓 = (2nd𝑦))) → (𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩ ↔ 𝑧 = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩))
5251copsex4g 4299 . . . . . 6 ((((1st𝑥) ∈ N ∧ (2nd𝑥) ∈ N) ∧ ((1st𝑦) ∈ N ∧ (2nd𝑦) ∈ N)) → (∃𝑤𝑣𝑢𝑓((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩) ↔ 𝑧 = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩))
5339, 41, 52syl2an 289 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (∃𝑤𝑣𝑢𝑓((⟨(1st𝑥), (2nd𝑥)⟩ = ⟨𝑤, 𝑣⟩ ∧ ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑢 ·N 𝑣)), (𝑣 ·N 𝑓)⟩) ↔ 𝑧 = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩))
5437, 53bitr3d 190 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) → (∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩) ↔ 𝑧 = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩))
5554pm5.32i 454 . . 3 (((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩)) ↔ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ 𝑧 = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩))
5655oprabbii 6013 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ 𝑧 = ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)}
571, 2, 563eqtr4i 2237 1 +pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩))}
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2177  cop 3641   × cxp 4681  cfv 5280  (class class class)co 5957  {coprab 5958  cmpo 5959  1st c1st 6237  2nd c2nd 6238  Ncnpi 7405   +N cpli 7406   ·N cmi 7407   +pQ cplpq 7409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-oadd 6519  df-omul 6520  df-ni 7437  df-mi 7439  df-plpq 7477
This theorem is referenced by:  addpipqqs  7503
  Copyright terms: Public domain W3C validator