ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  copsex4g GIF version

Theorem copsex4g 4292
Description: An implicit substitution inference for 2 ordered pairs. (Contributed by NM, 5-Aug-1995.)
Hypothesis
Ref Expression
copsex4g.1 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) → (𝜑𝜓))
Assertion
Ref Expression
copsex4g (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (∃𝑥𝑦𝑧𝑤((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩) ∧ 𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤   𝑥,𝐶,𝑦,𝑧,𝑤   𝑥,𝐷,𝑦,𝑧,𝑤   𝜓,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝑥,𝑆,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem copsex4g
StepHypRef Expression
1 eqcom 2207 . . . . . . 7 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
2 vex 2775 . . . . . . . 8 𝑥 ∈ V
3 vex 2775 . . . . . . . 8 𝑦 ∈ V
42, 3opth 4282 . . . . . . 7 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
51, 4bitri 184 . . . . . 6 (⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
6 eqcom 2207 . . . . . . 7 (⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩ ↔ ⟨𝑧, 𝑤⟩ = ⟨𝐶, 𝐷⟩)
7 vex 2775 . . . . . . . 8 𝑧 ∈ V
8 vex 2775 . . . . . . . 8 𝑤 ∈ V
97, 8opth 4282 . . . . . . 7 (⟨𝑧, 𝑤⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑧 = 𝐶𝑤 = 𝐷))
106, 9bitri 184 . . . . . 6 (⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩ ↔ (𝑧 = 𝐶𝑤 = 𝐷))
115, 10anbi12i 460 . . . . 5 ((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩) ↔ ((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)))
1211anbi1i 458 . . . 4 (((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩) ∧ 𝜑) ↔ (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) ∧ 𝜑))
1312a1i 9 . . 3 (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩) ∧ 𝜑) ↔ (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) ∧ 𝜑)))
14134exbidv 1893 . 2 (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (∃𝑥𝑦𝑧𝑤((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩) ∧ 𝜑) ↔ ∃𝑥𝑦𝑧𝑤(((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) ∧ 𝜑)))
15 id 19 . . 3 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) → ((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)))
16 copsex4g.1 . . 3 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) → (𝜑𝜓))
1715, 16cgsex4g 2809 . 2 (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (∃𝑥𝑦𝑧𝑤(((𝑥 = 𝐴𝑦 = 𝐵) ∧ (𝑧 = 𝐶𝑤 = 𝐷)) ∧ 𝜑) ↔ 𝜓))
1814, 17bitrd 188 1 (((𝐴𝑅𝐵𝑆) ∧ (𝐶𝑅𝐷𝑆)) → (∃𝑥𝑦𝑧𝑤((⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝑧, 𝑤⟩) ∧ 𝜑) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1515  wcel 2176  cop 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642
This theorem is referenced by:  opbrop  4755  ovi3  6085  dfplpq2  7469  dfmpq2  7470  enq0breq  7551
  Copyright terms: Public domain W3C validator