Proof of Theorem lgsdir2lem1
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 1nn 9001 | 
. . . . 5
⊢ 1 ∈
ℕ | 
| 2 |   | nnq 9707 | 
. . . . 5
⊢ (1 ∈
ℕ → 1 ∈ ℚ) | 
| 3 | 1, 2 | ax-mp 5 | 
. . . 4
⊢ 1 ∈
ℚ | 
| 4 |   | 8nn 9158 | 
. . . . 5
⊢ 8 ∈
ℕ | 
| 5 |   | nnq 9707 | 
. . . . 5
⊢ (8 ∈
ℕ → 8 ∈ ℚ) | 
| 6 | 4, 5 | ax-mp 5 | 
. . . 4
⊢ 8 ∈
ℚ | 
| 7 |   | 0le1 8508 | 
. . . 4
⊢ 0 ≤
1 | 
| 8 |   | 1lt8 9187 | 
. . . 4
⊢ 1 <
8 | 
| 9 |   | modqid 10441 | 
. . . 4
⊢ (((1
∈ ℚ ∧ 8 ∈ ℚ) ∧ (0 ≤ 1 ∧ 1 < 8)) →
(1 mod 8) = 1) | 
| 10 | 3, 6, 7, 8, 9 | mp4an 427 | 
. . 3
⊢ (1 mod 8)
= 1 | 
| 11 |   | 8cn 9076 | 
. . . . . . . 8
⊢ 8 ∈
ℂ | 
| 12 | 11 | mullidi 8029 | 
. . . . . . 7
⊢ (1
· 8) = 8 | 
| 13 | 12 | oveq2i 5933 | 
. . . . . 6
⊢ (-1 + (1
· 8)) = (-1 + 8) | 
| 14 |   | ax-1cn 7972 | 
. . . . . . . 8
⊢ 1 ∈
ℂ | 
| 15 | 14 | negcli 8294 | 
. . . . . . 7
⊢ -1 ∈
ℂ | 
| 16 | 11, 14 | negsubi 8304 | 
. . . . . . . 8
⊢ (8 + -1)
= (8 − 1) | 
| 17 |   | 8m1e7 9115 | 
. . . . . . . 8
⊢ (8
− 1) = 7 | 
| 18 | 16, 17 | eqtri 2217 | 
. . . . . . 7
⊢ (8 + -1)
= 7 | 
| 19 | 11, 15, 18 | addcomli 8171 | 
. . . . . 6
⊢ (-1 + 8)
= 7 | 
| 20 | 13, 19 | eqtri 2217 | 
. . . . 5
⊢ (-1 + (1
· 8)) = 7 | 
| 21 | 20 | oveq1i 5932 | 
. . . 4
⊢ ((-1 + (1
· 8)) mod 8) = (7 mod 8) | 
| 22 |   | qnegcl 9710 | 
. . . . . 6
⊢ (1 ∈
ℚ → -1 ∈ ℚ) | 
| 23 | 3, 22 | ax-mp 5 | 
. . . . 5
⊢ -1 ∈
ℚ | 
| 24 |   | 1z 9352 | 
. . . . 5
⊢ 1 ∈
ℤ | 
| 25 |   | 8pos 9093 | 
. . . . 5
⊢ 0 <
8 | 
| 26 |   | modqcyc 10451 | 
. . . . 5
⊢ (((-1
∈ ℚ ∧ 1 ∈ ℤ) ∧ (8 ∈ ℚ ∧ 0 < 8))
→ ((-1 + (1 · 8)) mod 8) = (-1 mod 8)) | 
| 27 | 23, 24, 6, 25, 26 | mp4an 427 | 
. . . 4
⊢ ((-1 + (1
· 8)) mod 8) = (-1 mod 8) | 
| 28 |   | 7nn 9157 | 
. . . . . 6
⊢ 7 ∈
ℕ | 
| 29 |   | nnq 9707 | 
. . . . . 6
⊢ (7 ∈
ℕ → 7 ∈ ℚ) | 
| 30 | 28, 29 | ax-mp 5 | 
. . . . 5
⊢ 7 ∈
ℚ | 
| 31 |   | 0re 8026 | 
. . . . . 6
⊢ 0 ∈
ℝ | 
| 32 |   | 7re 9073 | 
. . . . . 6
⊢ 7 ∈
ℝ | 
| 33 |   | 7pos 9092 | 
. . . . . 6
⊢ 0 <
7 | 
| 34 | 31, 32, 33 | ltleii 8129 | 
. . . . 5
⊢ 0 ≤
7 | 
| 35 |   | 7lt8 9181 | 
. . . . 5
⊢ 7 <
8 | 
| 36 |   | modqid 10441 | 
. . . . 5
⊢ (((7
∈ ℚ ∧ 8 ∈ ℚ) ∧ (0 ≤ 7 ∧ 7 < 8)) →
(7 mod 8) = 7) | 
| 37 | 30, 6, 34, 35, 36 | mp4an 427 | 
. . . 4
⊢ (7 mod 8)
= 7 | 
| 38 | 21, 27, 37 | 3eqtr3i 2225 | 
. . 3
⊢ (-1 mod
8) = 7 | 
| 39 | 10, 38 | pm3.2i 272 | 
. 2
⊢ ((1 mod
8) = 1 ∧ (-1 mod 8) = 7) | 
| 40 |   | 3nn 9153 | 
. . . . 5
⊢ 3 ∈
ℕ | 
| 41 |   | nnq 9707 | 
. . . . 5
⊢ (3 ∈
ℕ → 3 ∈ ℚ) | 
| 42 | 40, 41 | ax-mp 5 | 
. . . 4
⊢ 3 ∈
ℚ | 
| 43 |   | 3re 9064 | 
. . . . 5
⊢ 3 ∈
ℝ | 
| 44 |   | 3pos 9084 | 
. . . . 5
⊢ 0 <
3 | 
| 45 | 31, 43, 44 | ltleii 8129 | 
. . . 4
⊢ 0 ≤
3 | 
| 46 |   | 3lt8 9185 | 
. . . 4
⊢ 3 <
8 | 
| 47 |   | modqid 10441 | 
. . . 4
⊢ (((3
∈ ℚ ∧ 8 ∈ ℚ) ∧ (0 ≤ 3 ∧ 3 < 8)) →
(3 mod 8) = 3) | 
| 48 | 42, 6, 45, 46, 47 | mp4an 427 | 
. . 3
⊢ (3 mod 8)
= 3 | 
| 49 | 12 | oveq2i 5933 | 
. . . . . 6
⊢ (-3 + (1
· 8)) = (-3 + 8) | 
| 50 |   | 3cn 9065 | 
. . . . . . . 8
⊢ 3 ∈
ℂ | 
| 51 | 50 | negcli 8294 | 
. . . . . . 7
⊢ -3 ∈
ℂ | 
| 52 | 11, 50 | negsubi 8304 | 
. . . . . . . 8
⊢ (8 + -3)
= (8 − 3) | 
| 53 |   | 5cn 9070 | 
. . . . . . . . 9
⊢ 5 ∈
ℂ | 
| 54 |   | 5p3e8 9138 | 
. . . . . . . . . 10
⊢ (5 + 3) =
8 | 
| 55 | 53, 50, 54 | addcomli 8171 | 
. . . . . . . . 9
⊢ (3 + 5) =
8 | 
| 56 | 11, 50, 53, 55 | subaddrii 8315 | 
. . . . . . . 8
⊢ (8
− 3) = 5 | 
| 57 | 52, 56 | eqtri 2217 | 
. . . . . . 7
⊢ (8 + -3)
= 5 | 
| 58 | 11, 51, 57 | addcomli 8171 | 
. . . . . 6
⊢ (-3 + 8)
= 5 | 
| 59 | 49, 58 | eqtri 2217 | 
. . . . 5
⊢ (-3 + (1
· 8)) = 5 | 
| 60 | 59 | oveq1i 5932 | 
. . . 4
⊢ ((-3 + (1
· 8)) mod 8) = (5 mod 8) | 
| 61 |   | qnegcl 9710 | 
. . . . . 6
⊢ (3 ∈
ℚ → -3 ∈ ℚ) | 
| 62 | 42, 61 | ax-mp 5 | 
. . . . 5
⊢ -3 ∈
ℚ | 
| 63 |   | modqcyc 10451 | 
. . . . 5
⊢ (((-3
∈ ℚ ∧ 1 ∈ ℤ) ∧ (8 ∈ ℚ ∧ 0 < 8))
→ ((-3 + (1 · 8)) mod 8) = (-3 mod 8)) | 
| 64 | 62, 24, 6, 25, 63 | mp4an 427 | 
. . . 4
⊢ ((-3 + (1
· 8)) mod 8) = (-3 mod 8) | 
| 65 |   | 5nn 9155 | 
. . . . . 6
⊢ 5 ∈
ℕ | 
| 66 |   | nnq 9707 | 
. . . . . 6
⊢ (5 ∈
ℕ → 5 ∈ ℚ) | 
| 67 | 65, 66 | ax-mp 5 | 
. . . . 5
⊢ 5 ∈
ℚ | 
| 68 |   | 5re 9069 | 
. . . . . 6
⊢ 5 ∈
ℝ | 
| 69 |   | 5pos 9090 | 
. . . . . 6
⊢ 0 <
5 | 
| 70 | 31, 68, 69 | ltleii 8129 | 
. . . . 5
⊢ 0 ≤
5 | 
| 71 |   | 5lt8 9183 | 
. . . . 5
⊢ 5 <
8 | 
| 72 |   | modqid 10441 | 
. . . . 5
⊢ (((5
∈ ℚ ∧ 8 ∈ ℚ) ∧ (0 ≤ 5 ∧ 5 < 8)) →
(5 mod 8) = 5) | 
| 73 | 67, 6, 70, 71, 72 | mp4an 427 | 
. . . 4
⊢ (5 mod 8)
= 5 | 
| 74 | 60, 64, 73 | 3eqtr3i 2225 | 
. . 3
⊢ (-3 mod
8) = 5 | 
| 75 | 48, 74 | pm3.2i 272 | 
. 2
⊢ ((3 mod
8) = 3 ∧ (-3 mod 8) = 5) | 
| 76 | 39, 75 | pm3.2i 272 | 
1
⊢ (((1 mod
8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) =
5)) |