Proof of Theorem lgsdir2lem1
Step | Hyp | Ref
| Expression |
1 | | 1nn 8889 |
. . . . 5
⊢ 1 ∈
ℕ |
2 | | nnq 9592 |
. . . . 5
⊢ (1 ∈
ℕ → 1 ∈ ℚ) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ 1 ∈
ℚ |
4 | | 8nn 9045 |
. . . . 5
⊢ 8 ∈
ℕ |
5 | | nnq 9592 |
. . . . 5
⊢ (8 ∈
ℕ → 8 ∈ ℚ) |
6 | 4, 5 | ax-mp 5 |
. . . 4
⊢ 8 ∈
ℚ |
7 | | 0le1 8400 |
. . . 4
⊢ 0 ≤
1 |
8 | | 1lt8 9074 |
. . . 4
⊢ 1 <
8 |
9 | | modqid 10305 |
. . . 4
⊢ (((1
∈ ℚ ∧ 8 ∈ ℚ) ∧ (0 ≤ 1 ∧ 1 < 8)) →
(1 mod 8) = 1) |
10 | 3, 6, 7, 8, 9 | mp4an 425 |
. . 3
⊢ (1 mod 8)
= 1 |
11 | | 8cn 8964 |
. . . . . . . 8
⊢ 8 ∈
ℂ |
12 | 11 | mulid2i 7923 |
. . . . . . 7
⊢ (1
· 8) = 8 |
13 | 12 | oveq2i 5864 |
. . . . . 6
⊢ (-1 + (1
· 8)) = (-1 + 8) |
14 | | ax-1cn 7867 |
. . . . . . . 8
⊢ 1 ∈
ℂ |
15 | 14 | negcli 8187 |
. . . . . . 7
⊢ -1 ∈
ℂ |
16 | 11, 14 | negsubi 8197 |
. . . . . . . 8
⊢ (8 + -1)
= (8 − 1) |
17 | | 8m1e7 9003 |
. . . . . . . 8
⊢ (8
− 1) = 7 |
18 | 16, 17 | eqtri 2191 |
. . . . . . 7
⊢ (8 + -1)
= 7 |
19 | 11, 15, 18 | addcomli 8064 |
. . . . . 6
⊢ (-1 + 8)
= 7 |
20 | 13, 19 | eqtri 2191 |
. . . . 5
⊢ (-1 + (1
· 8)) = 7 |
21 | 20 | oveq1i 5863 |
. . . 4
⊢ ((-1 + (1
· 8)) mod 8) = (7 mod 8) |
22 | | qnegcl 9595 |
. . . . . 6
⊢ (1 ∈
ℚ → -1 ∈ ℚ) |
23 | 3, 22 | ax-mp 5 |
. . . . 5
⊢ -1 ∈
ℚ |
24 | | 1z 9238 |
. . . . 5
⊢ 1 ∈
ℤ |
25 | | 8pos 8981 |
. . . . 5
⊢ 0 <
8 |
26 | | modqcyc 10315 |
. . . . 5
⊢ (((-1
∈ ℚ ∧ 1 ∈ ℤ) ∧ (8 ∈ ℚ ∧ 0 < 8))
→ ((-1 + (1 · 8)) mod 8) = (-1 mod 8)) |
27 | 23, 24, 6, 25, 26 | mp4an 425 |
. . . 4
⊢ ((-1 + (1
· 8)) mod 8) = (-1 mod 8) |
28 | | 7nn 9044 |
. . . . . 6
⊢ 7 ∈
ℕ |
29 | | nnq 9592 |
. . . . . 6
⊢ (7 ∈
ℕ → 7 ∈ ℚ) |
30 | 28, 29 | ax-mp 5 |
. . . . 5
⊢ 7 ∈
ℚ |
31 | | 0re 7920 |
. . . . . 6
⊢ 0 ∈
ℝ |
32 | | 7re 8961 |
. . . . . 6
⊢ 7 ∈
ℝ |
33 | | 7pos 8980 |
. . . . . 6
⊢ 0 <
7 |
34 | 31, 32, 33 | ltleii 8022 |
. . . . 5
⊢ 0 ≤
7 |
35 | | 7lt8 9068 |
. . . . 5
⊢ 7 <
8 |
36 | | modqid 10305 |
. . . . 5
⊢ (((7
∈ ℚ ∧ 8 ∈ ℚ) ∧ (0 ≤ 7 ∧ 7 < 8)) →
(7 mod 8) = 7) |
37 | 30, 6, 34, 35, 36 | mp4an 425 |
. . . 4
⊢ (7 mod 8)
= 7 |
38 | 21, 27, 37 | 3eqtr3i 2199 |
. . 3
⊢ (-1 mod
8) = 7 |
39 | 10, 38 | pm3.2i 270 |
. 2
⊢ ((1 mod
8) = 1 ∧ (-1 mod 8) = 7) |
40 | | 3nn 9040 |
. . . . 5
⊢ 3 ∈
ℕ |
41 | | nnq 9592 |
. . . . 5
⊢ (3 ∈
ℕ → 3 ∈ ℚ) |
42 | 40, 41 | ax-mp 5 |
. . . 4
⊢ 3 ∈
ℚ |
43 | | 3re 8952 |
. . . . 5
⊢ 3 ∈
ℝ |
44 | | 3pos 8972 |
. . . . 5
⊢ 0 <
3 |
45 | 31, 43, 44 | ltleii 8022 |
. . . 4
⊢ 0 ≤
3 |
46 | | 3lt8 9072 |
. . . 4
⊢ 3 <
8 |
47 | | modqid 10305 |
. . . 4
⊢ (((3
∈ ℚ ∧ 8 ∈ ℚ) ∧ (0 ≤ 3 ∧ 3 < 8)) →
(3 mod 8) = 3) |
48 | 42, 6, 45, 46, 47 | mp4an 425 |
. . 3
⊢ (3 mod 8)
= 3 |
49 | 12 | oveq2i 5864 |
. . . . . 6
⊢ (-3 + (1
· 8)) = (-3 + 8) |
50 | | 3cn 8953 |
. . . . . . . 8
⊢ 3 ∈
ℂ |
51 | 50 | negcli 8187 |
. . . . . . 7
⊢ -3 ∈
ℂ |
52 | 11, 50 | negsubi 8197 |
. . . . . . . 8
⊢ (8 + -3)
= (8 − 3) |
53 | | 5cn 8958 |
. . . . . . . . 9
⊢ 5 ∈
ℂ |
54 | | 5p3e8 9025 |
. . . . . . . . . 10
⊢ (5 + 3) =
8 |
55 | 53, 50, 54 | addcomli 8064 |
. . . . . . . . 9
⊢ (3 + 5) =
8 |
56 | 11, 50, 53, 55 | subaddrii 8208 |
. . . . . . . 8
⊢ (8
− 3) = 5 |
57 | 52, 56 | eqtri 2191 |
. . . . . . 7
⊢ (8 + -3)
= 5 |
58 | 11, 51, 57 | addcomli 8064 |
. . . . . 6
⊢ (-3 + 8)
= 5 |
59 | 49, 58 | eqtri 2191 |
. . . . 5
⊢ (-3 + (1
· 8)) = 5 |
60 | 59 | oveq1i 5863 |
. . . 4
⊢ ((-3 + (1
· 8)) mod 8) = (5 mod 8) |
61 | | qnegcl 9595 |
. . . . . 6
⊢ (3 ∈
ℚ → -3 ∈ ℚ) |
62 | 42, 61 | ax-mp 5 |
. . . . 5
⊢ -3 ∈
ℚ |
63 | | modqcyc 10315 |
. . . . 5
⊢ (((-3
∈ ℚ ∧ 1 ∈ ℤ) ∧ (8 ∈ ℚ ∧ 0 < 8))
→ ((-3 + (1 · 8)) mod 8) = (-3 mod 8)) |
64 | 62, 24, 6, 25, 63 | mp4an 425 |
. . . 4
⊢ ((-3 + (1
· 8)) mod 8) = (-3 mod 8) |
65 | | 5nn 9042 |
. . . . . 6
⊢ 5 ∈
ℕ |
66 | | nnq 9592 |
. . . . . 6
⊢ (5 ∈
ℕ → 5 ∈ ℚ) |
67 | 65, 66 | ax-mp 5 |
. . . . 5
⊢ 5 ∈
ℚ |
68 | | 5re 8957 |
. . . . . 6
⊢ 5 ∈
ℝ |
69 | | 5pos 8978 |
. . . . . 6
⊢ 0 <
5 |
70 | 31, 68, 69 | ltleii 8022 |
. . . . 5
⊢ 0 ≤
5 |
71 | | 5lt8 9070 |
. . . . 5
⊢ 5 <
8 |
72 | | modqid 10305 |
. . . . 5
⊢ (((5
∈ ℚ ∧ 8 ∈ ℚ) ∧ (0 ≤ 5 ∧ 5 < 8)) →
(5 mod 8) = 5) |
73 | 67, 6, 70, 71, 72 | mp4an 425 |
. . . 4
⊢ (5 mod 8)
= 5 |
74 | 60, 64, 73 | 3eqtr3i 2199 |
. . 3
⊢ (-3 mod
8) = 5 |
75 | 48, 74 | pm3.2i 270 |
. 2
⊢ ((3 mod
8) = 3 ∧ (-3 mod 8) = 5) |
76 | 39, 75 | pm3.2i 270 |
1
⊢ (((1 mod
8) = 1 ∧ (-1 mod 8) = 7) ∧ ((3 mod 8) = 3 ∧ (-3 mod 8) =
5)) |