Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 7lt10 | GIF version |
Description: 7 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 8-Sep-2021.) |
Ref | Expression |
---|---|
7lt10 | ⊢ 7 < ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7lt8 9028 | . 2 ⊢ 7 < 8 | |
2 | 8lt10 9431 | . 2 ⊢ 8 < ;10 | |
3 | 7re 8921 | . . 3 ⊢ 7 ∈ ℝ | |
4 | 8re 8923 | . . 3 ⊢ 8 ∈ ℝ | |
5 | 10re 9318 | . . 3 ⊢ ;10 ∈ ℝ | |
6 | 3, 4, 5 | lttri 7984 | . 2 ⊢ ((7 < 8 ∧ 8 < ;10) → 7 < ;10) |
7 | 1, 2, 6 | mp2an 423 | 1 ⊢ 7 < ;10 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3967 0cc0 7734 1c1 7735 < clt 7914 7c7 8894 8c8 8895 ;cdc 9300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4084 ax-pow 4137 ax-pr 4171 ax-un 4395 ax-setind 4498 ax-cnex 7825 ax-resscn 7826 ax-1cn 7827 ax-1re 7828 ax-icn 7829 ax-addcl 7830 ax-addrcl 7831 ax-mulcl 7832 ax-addcom 7834 ax-mulcom 7835 ax-addass 7836 ax-mulass 7837 ax-distr 7838 ax-i2m1 7839 ax-0lt1 7840 ax-1rid 7841 ax-0id 7842 ax-rnegex 7843 ax-cnre 7845 ax-pre-lttrn 7848 ax-pre-ltadd 7850 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-br 3968 df-opab 4028 df-xp 4594 df-iota 5137 df-fv 5180 df-ov 5829 df-pnf 7916 df-mnf 7917 df-ltxr 7919 df-inn 8839 df-2 8897 df-3 8898 df-4 8899 df-5 8900 df-6 8901 df-7 8902 df-8 8903 df-9 8904 df-dec 9301 |
This theorem is referenced by: 6lt10 9433 |
Copyright terms: Public domain | W3C validator |