Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1re | GIF version |
Description: 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.) |
Ref | Expression |
---|---|
1re | ⊢ 1 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1re 7868 | 1 ⊢ 1 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ℝcr 7773 1c1 7775 |
This theorem was proved from axioms: ax-1re 7868 |
This theorem is referenced by: 0re 7920 1red 7935 1xr 7978 0lt1 8046 peano2re 8055 peano2rem 8186 0reALT 8216 0le1 8400 1le1 8491 inelr 8503 1ap0 8509 eqneg 8649 ltp1 8760 ltm1 8762 recgt0 8766 mulgt1 8779 ltmulgt11 8780 lemulge11 8782 reclt1 8812 recgt1 8813 recgt1i 8814 recp1lt1 8815 recreclt 8816 sup3exmid 8873 cju 8877 peano5nni 8881 nnssre 8882 1nn 8889 nnge1 8901 nnle1eq1 8902 nngt0 8903 nnnlt1 8904 nn1gt1 8912 nngt1ne1 8913 nnrecre 8915 nnrecgt0 8916 nnsub 8917 2re 8948 3re 8952 4re 8955 5re 8957 6re 8959 7re 8961 8re 8963 9re 8965 0le2 8968 2pos 8969 3pos 8972 4pos 8975 5pos 8978 6pos 8979 7pos 8980 8pos 8981 9pos 8982 neg1rr 8984 neg1lt0 8986 1lt2 9047 1lt3 9049 1lt4 9052 1lt5 9056 1lt6 9061 1lt7 9067 1lt8 9074 1lt9 9082 1ne2 9084 1ap2 9085 1le2 9086 1le3 9089 halflt1 9095 iap0 9101 addltmul 9114 elnnnn0c 9180 nn0ge2m1nn 9195 elnnz1 9235 zltp1le 9266 zleltp1 9267 recnz 9305 gtndiv 9307 3halfnz 9309 1lt10 9481 eluzp1m1 9510 eluzp1p1 9512 eluz2b2 9562 1rp 9614 divlt1lt 9681 divle1le 9682 nnledivrp 9723 0elunit 9943 1elunit 9944 divelunit 9959 lincmb01cmp 9960 iccf1o 9961 unitssre 9962 fzpreddisj 10027 fznatpl1 10032 fztpval 10039 qbtwnxr 10214 flqbi2 10247 fldiv4p1lem1div2 10261 flqdiv 10277 reexpcl 10493 reexpclzap 10496 expge0 10512 expge1 10513 expgt1 10514 bernneq 10596 bernneq2 10597 expnbnd 10599 expnlbnd 10600 expnlbnd2 10601 nn0ltexp2 10644 facwordi 10674 faclbnd3 10677 faclbnd6 10678 facavg 10680 cjexp 10857 re1 10861 im1 10862 rei 10863 imi 10864 caucvgre 10945 sqrt1 11010 sqrt2gt1lt2 11013 abs1 11036 caubnd2 11081 mulcn2 11275 reccn2ap 11276 expcnvap0 11465 geo2sum 11477 cvgratnnlemrate 11493 fprodge0 11600 fprodge1 11602 fprodle 11603 ere 11633 ege2le3 11634 efgt1 11660 resin4p 11681 recos4p 11682 sinbnd 11715 cosbnd 11716 sinbnd2 11717 cosbnd2 11718 ef01bndlem 11719 sin01bnd 11720 cos01bnd 11721 cos1bnd 11722 cos2bnd 11723 sin01gt0 11724 cos01gt0 11725 sin02gt0 11726 sincos1sgn 11727 cos12dec 11730 ene1 11747 eap1 11748 halfleoddlt 11853 flodddiv4 11893 isprm3 12072 sqnprm 12090 coprm 12098 phibndlem 12170 pythagtriplem3 12221 fldivp1 12300 pockthi 12310 exmidunben 12381 basendxnmulrndx 12532 setsmsbasg 13273 tgioo 13340 dveflem 13481 reeff1olem 13486 reeff1o 13488 cosz12 13495 sinhalfpilem 13506 tangtx 13553 sincos4thpi 13555 pigt3 13559 coskpi 13563 cos0pilt1 13567 ioocosf1o 13569 loge 13582 logrpap0b 13591 logdivlti 13596 2logb9irrALT 13686 sqrt2cxp2logb9e3 13687 lgsdir 13730 lgsne0 13733 lgsabs1 13734 lgsdinn0 13743 ex-fl 13760 cvgcmp2nlemabs 14064 iooref1o 14066 trilpolemclim 14068 trilpolemcl 14069 trilpolemisumle 14070 trilpolemeq1 14072 trilpolemlt1 14073 apdiff 14080 nconstwlpolemgt0 14095 |
Copyright terms: Public domain | W3C validator |