| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1re | GIF version | ||
| Description: 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| 1re | ⊢ 1 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1re 8049 | 1 ⊢ 1 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ℝcr 7954 1c1 7956 |
| This theorem was proved from axioms: ax-1re 8049 |
| This theorem is referenced by: 0re 8102 1red 8117 1xr 8161 0lt1 8229 peano2re 8238 peano2rem 8369 0reALT 8399 0le1 8584 1le1 8675 inelr 8687 1ap0 8693 eqneg 8835 ltp1 8947 ltm1 8949 recgt0 8953 mulgt1 8966 ltmulgt11 8967 lemulge11 8969 reclt1 8999 recgt1 9000 recgt1i 9001 recp1lt1 9002 recreclt 9003 sup3exmid 9060 cju 9064 peano5nni 9069 nnssre 9070 1nn 9077 nnge1 9089 nnle1eq1 9090 nngt0 9091 nnnlt1 9092 nn1gt1 9100 nngt1ne1 9101 nnrecre 9103 nnrecgt0 9104 nnsub 9105 2re 9136 3re 9140 4re 9143 5re 9145 6re 9147 7re 9149 8re 9151 9re 9153 0le2 9156 2pos 9157 3pos 9160 4pos 9163 5pos 9166 6pos 9167 7pos 9168 8pos 9169 9pos 9170 neg1rr 9172 neg1lt0 9174 1lt2 9236 1lt3 9238 1lt4 9241 1lt5 9245 1lt6 9250 1lt7 9256 1lt8 9263 1lt9 9271 1ne2 9273 1ap2 9274 1le2 9275 1le3 9278 halflt1 9284 iap0 9290 addltmul 9304 elnnnn0c 9370 nn0ge2m1nn 9385 elnnz1 9425 zltp1le 9457 zleltp1 9458 recnz 9496 gtndiv 9498 3halfnz 9500 1lt10 9672 eluzp1m1 9702 eluzp1p1 9704 eluz2b2 9754 1rp 9809 divlt1lt 9876 divle1le 9877 nnledivrp 9918 0elunit 10138 1elunit 10139 divelunit 10154 lincmb01cmp 10155 iccf1o 10156 unitssre 10157 fzpreddisj 10223 fznatpl1 10228 fztpval 10235 qbtwnxr 10432 flqbi2 10466 fldiv4p1lem1div2 10480 flqdiv 10498 seqf1oglem1 10696 reexpcl 10733 reexpclzap 10736 expge0 10752 expge1 10753 expgt1 10754 bernneq 10837 bernneq2 10838 expnbnd 10840 expnlbnd 10841 expnlbnd2 10842 nn0ltexp2 10886 facwordi 10917 faclbnd3 10920 faclbnd6 10921 facavg 10923 lsw0 11073 cjexp 11289 re1 11293 im1 11294 rei 11295 imi 11296 caucvgre 11377 sqrt1 11442 sqrt2gt1lt2 11445 abs1 11468 caubnd2 11513 mulcn2 11708 reccn2ap 11709 expcnvap0 11898 geo2sum 11910 cvgratnnlemrate 11926 fprodge0 12033 fprodge1 12035 fprodle 12036 ere 12066 ege2le3 12067 efgt1 12093 resin4p 12114 recos4p 12115 sinbnd 12148 cosbnd 12149 sinbnd2 12150 cosbnd2 12151 ef01bndlem 12152 sin01bnd 12153 cos01bnd 12154 cos1bnd 12155 cos2bnd 12156 sinltxirr 12157 sin01gt0 12158 cos01gt0 12159 sin02gt0 12160 sincos1sgn 12161 cos12dec 12164 ene1 12181 eap1 12182 3dvds 12260 halfleoddlt 12290 flodddiv4 12332 isprm3 12525 sqnprm 12543 coprm 12551 phibndlem 12623 pythagtriplem3 12675 fldivp1 12756 pockthi 12766 exmidunben 12882 basendxnmulrndx 13051 starvndxnbasendx 13059 scandxnbasendx 13071 vscandxnbasendx 13076 ipndxnbasendx 13089 basendxnocndx 13130 setsmsbasg 15036 tgioo 15111 dveflem 15283 reeff1olem 15328 reeff1o 15330 cosz12 15337 sinhalfpilem 15348 tangtx 15395 sincos4thpi 15397 pigt3 15401 coskpi 15405 cos0pilt1 15409 ioocosf1o 15411 loge 15424 logrpap0b 15433 logdivlti 15438 2logb9irrALT 15531 sqrt2cxp2logb9e3 15532 perfectlem2 15557 lgsdir 15597 lgsne0 15600 lgsabs1 15601 lgsdinn0 15610 gausslemma2dlem0i 15619 lgseisen 15636 2lgslem3 15663 ex-fl 15831 cvgcmp2nlemabs 16143 iooref1o 16145 trilpolemclim 16147 trilpolemcl 16148 trilpolemisumle 16149 trilpolemeq1 16151 trilpolemlt1 16152 apdiff 16159 nconstwlpolemgt0 16175 |
| Copyright terms: Public domain | W3C validator |