| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1re | GIF version | ||
| Description: 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| 1re | ⊢ 1 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1re 7992 | 1 ⊢ 1 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℝcr 7897 1c1 7899 |
| This theorem was proved from axioms: ax-1re 7992 |
| This theorem is referenced by: 0re 8045 1red 8060 1xr 8104 0lt1 8172 peano2re 8181 peano2rem 8312 0reALT 8342 0le1 8527 1le1 8618 inelr 8630 1ap0 8636 eqneg 8778 ltp1 8890 ltm1 8892 recgt0 8896 mulgt1 8909 ltmulgt11 8910 lemulge11 8912 reclt1 8942 recgt1 8943 recgt1i 8944 recp1lt1 8945 recreclt 8946 sup3exmid 9003 cju 9007 peano5nni 9012 nnssre 9013 1nn 9020 nnge1 9032 nnle1eq1 9033 nngt0 9034 nnnlt1 9035 nn1gt1 9043 nngt1ne1 9044 nnrecre 9046 nnrecgt0 9047 nnsub 9048 2re 9079 3re 9083 4re 9086 5re 9088 6re 9090 7re 9092 8re 9094 9re 9096 0le2 9099 2pos 9100 3pos 9103 4pos 9106 5pos 9109 6pos 9110 7pos 9111 8pos 9112 9pos 9113 neg1rr 9115 neg1lt0 9117 1lt2 9179 1lt3 9181 1lt4 9184 1lt5 9188 1lt6 9193 1lt7 9199 1lt8 9206 1lt9 9214 1ne2 9216 1ap2 9217 1le2 9218 1le3 9221 halflt1 9227 iap0 9233 addltmul 9247 elnnnn0c 9313 nn0ge2m1nn 9328 elnnz1 9368 zltp1le 9399 zleltp1 9400 recnz 9438 gtndiv 9440 3halfnz 9442 1lt10 9614 eluzp1m1 9644 eluzp1p1 9646 eluz2b2 9696 1rp 9751 divlt1lt 9818 divle1le 9819 nnledivrp 9860 0elunit 10080 1elunit 10081 divelunit 10096 lincmb01cmp 10097 iccf1o 10098 unitssre 10099 fzpreddisj 10165 fznatpl1 10170 fztpval 10177 qbtwnxr 10366 flqbi2 10400 fldiv4p1lem1div2 10414 flqdiv 10432 seqf1oglem1 10630 reexpcl 10667 reexpclzap 10670 expge0 10686 expge1 10687 expgt1 10688 bernneq 10771 bernneq2 10772 expnbnd 10774 expnlbnd 10775 expnlbnd2 10776 nn0ltexp2 10820 facwordi 10851 faclbnd3 10854 faclbnd6 10855 facavg 10857 cjexp 11077 re1 11081 im1 11082 rei 11083 imi 11084 caucvgre 11165 sqrt1 11230 sqrt2gt1lt2 11233 abs1 11256 caubnd2 11301 mulcn2 11496 reccn2ap 11497 expcnvap0 11686 geo2sum 11698 cvgratnnlemrate 11714 fprodge0 11821 fprodge1 11823 fprodle 11824 ere 11854 ege2le3 11855 efgt1 11881 resin4p 11902 recos4p 11903 sinbnd 11936 cosbnd 11937 sinbnd2 11938 cosbnd2 11939 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 cos1bnd 11943 cos2bnd 11944 sinltxirr 11945 sin01gt0 11946 cos01gt0 11947 sin02gt0 11948 sincos1sgn 11949 cos12dec 11952 ene1 11969 eap1 11970 3dvds 12048 halfleoddlt 12078 flodddiv4 12120 isprm3 12313 sqnprm 12331 coprm 12339 phibndlem 12411 pythagtriplem3 12463 fldivp1 12544 pockthi 12554 exmidunben 12670 basendxnmulrndx 12838 starvndxnbasendx 12846 scandxnbasendx 12858 vscandxnbasendx 12863 ipndxnbasendx 12876 basendxnocndx 12917 setsmsbasg 14823 tgioo 14898 dveflem 15070 reeff1olem 15115 reeff1o 15117 cosz12 15124 sinhalfpilem 15135 tangtx 15182 sincos4thpi 15184 pigt3 15188 coskpi 15192 cos0pilt1 15196 ioocosf1o 15198 loge 15211 logrpap0b 15220 logdivlti 15225 2logb9irrALT 15318 sqrt2cxp2logb9e3 15319 perfectlem2 15344 lgsdir 15384 lgsne0 15387 lgsabs1 15388 lgsdinn0 15397 gausslemma2dlem0i 15406 lgseisen 15423 2lgslem3 15450 ex-fl 15479 cvgcmp2nlemabs 15789 iooref1o 15791 trilpolemclim 15793 trilpolemcl 15794 trilpolemisumle 15795 trilpolemeq1 15797 trilpolemlt1 15798 apdiff 15805 nconstwlpolemgt0 15821 |
| Copyright terms: Public domain | W3C validator |