| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1re | GIF version | ||
| Description: 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| 1re | ⊢ 1 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1re 8018 | 1 ⊢ 1 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ℝcr 7923 1c1 7925 |
| This theorem was proved from axioms: ax-1re 8018 |
| This theorem is referenced by: 0re 8071 1red 8086 1xr 8130 0lt1 8198 peano2re 8207 peano2rem 8338 0reALT 8368 0le1 8553 1le1 8644 inelr 8656 1ap0 8662 eqneg 8804 ltp1 8916 ltm1 8918 recgt0 8922 mulgt1 8935 ltmulgt11 8936 lemulge11 8938 reclt1 8968 recgt1 8969 recgt1i 8970 recp1lt1 8971 recreclt 8972 sup3exmid 9029 cju 9033 peano5nni 9038 nnssre 9039 1nn 9046 nnge1 9058 nnle1eq1 9059 nngt0 9060 nnnlt1 9061 nn1gt1 9069 nngt1ne1 9070 nnrecre 9072 nnrecgt0 9073 nnsub 9074 2re 9105 3re 9109 4re 9112 5re 9114 6re 9116 7re 9118 8re 9120 9re 9122 0le2 9125 2pos 9126 3pos 9129 4pos 9132 5pos 9135 6pos 9136 7pos 9137 8pos 9138 9pos 9139 neg1rr 9141 neg1lt0 9143 1lt2 9205 1lt3 9207 1lt4 9210 1lt5 9214 1lt6 9219 1lt7 9225 1lt8 9232 1lt9 9240 1ne2 9242 1ap2 9243 1le2 9244 1le3 9247 halflt1 9253 iap0 9259 addltmul 9273 elnnnn0c 9339 nn0ge2m1nn 9354 elnnz1 9394 zltp1le 9426 zleltp1 9427 recnz 9465 gtndiv 9467 3halfnz 9469 1lt10 9641 eluzp1m1 9671 eluzp1p1 9673 eluz2b2 9723 1rp 9778 divlt1lt 9845 divle1le 9846 nnledivrp 9887 0elunit 10107 1elunit 10108 divelunit 10123 lincmb01cmp 10124 iccf1o 10125 unitssre 10126 fzpreddisj 10192 fznatpl1 10197 fztpval 10204 qbtwnxr 10398 flqbi2 10432 fldiv4p1lem1div2 10446 flqdiv 10464 seqf1oglem1 10662 reexpcl 10699 reexpclzap 10702 expge0 10718 expge1 10719 expgt1 10720 bernneq 10803 bernneq2 10804 expnbnd 10806 expnlbnd 10807 expnlbnd2 10808 nn0ltexp2 10852 facwordi 10883 faclbnd3 10886 faclbnd6 10887 facavg 10889 lsw0 11039 cjexp 11175 re1 11179 im1 11180 rei 11181 imi 11182 caucvgre 11263 sqrt1 11328 sqrt2gt1lt2 11331 abs1 11354 caubnd2 11399 mulcn2 11594 reccn2ap 11595 expcnvap0 11784 geo2sum 11796 cvgratnnlemrate 11812 fprodge0 11919 fprodge1 11921 fprodle 11922 ere 11952 ege2le3 11953 efgt1 11979 resin4p 12000 recos4p 12001 sinbnd 12034 cosbnd 12035 sinbnd2 12036 cosbnd2 12037 ef01bndlem 12038 sin01bnd 12039 cos01bnd 12040 cos1bnd 12041 cos2bnd 12042 sinltxirr 12043 sin01gt0 12044 cos01gt0 12045 sin02gt0 12046 sincos1sgn 12047 cos12dec 12050 ene1 12067 eap1 12068 3dvds 12146 halfleoddlt 12176 flodddiv4 12218 isprm3 12411 sqnprm 12429 coprm 12437 phibndlem 12509 pythagtriplem3 12561 fldivp1 12642 pockthi 12652 exmidunben 12768 basendxnmulrndx 12937 starvndxnbasendx 12945 scandxnbasendx 12957 vscandxnbasendx 12962 ipndxnbasendx 12975 basendxnocndx 13016 setsmsbasg 14922 tgioo 14997 dveflem 15169 reeff1olem 15214 reeff1o 15216 cosz12 15223 sinhalfpilem 15234 tangtx 15281 sincos4thpi 15283 pigt3 15287 coskpi 15291 cos0pilt1 15295 ioocosf1o 15297 loge 15310 logrpap0b 15319 logdivlti 15324 2logb9irrALT 15417 sqrt2cxp2logb9e3 15418 perfectlem2 15443 lgsdir 15483 lgsne0 15486 lgsabs1 15487 lgsdinn0 15496 gausslemma2dlem0i 15505 lgseisen 15522 2lgslem3 15549 ex-fl 15623 cvgcmp2nlemabs 15933 iooref1o 15935 trilpolemclim 15937 trilpolemcl 15938 trilpolemisumle 15939 trilpolemeq1 15941 trilpolemlt1 15942 apdiff 15949 nconstwlpolemgt0 15965 |
| Copyright terms: Public domain | W3C validator |