Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1re | GIF version |
Description: 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.) |
Ref | Expression |
---|---|
1re | ⊢ 1 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1re 7847 | 1 ⊢ 1 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ℝcr 7752 1c1 7754 |
This theorem was proved from axioms: ax-1re 7847 |
This theorem is referenced by: 0re 7899 1red 7914 1xr 7957 0lt1 8025 peano2re 8034 peano2rem 8165 0reALT 8195 0le1 8379 1le1 8470 inelr 8482 1ap0 8488 eqneg 8628 ltp1 8739 ltm1 8741 recgt0 8745 mulgt1 8758 ltmulgt11 8759 lemulge11 8761 reclt1 8791 recgt1 8792 recgt1i 8793 recp1lt1 8794 recreclt 8795 sup3exmid 8852 cju 8856 peano5nni 8860 nnssre 8861 1nn 8868 nnge1 8880 nnle1eq1 8881 nngt0 8882 nnnlt1 8883 nn1gt1 8891 nngt1ne1 8892 nnrecre 8894 nnrecgt0 8895 nnsub 8896 2re 8927 3re 8931 4re 8934 5re 8936 6re 8938 7re 8940 8re 8942 9re 8944 0le2 8947 2pos 8948 3pos 8951 4pos 8954 5pos 8957 6pos 8958 7pos 8959 8pos 8960 9pos 8961 neg1rr 8963 neg1lt0 8965 1lt2 9026 1lt3 9028 1lt4 9031 1lt5 9035 1lt6 9040 1lt7 9046 1lt8 9053 1lt9 9061 1ne2 9063 1ap2 9064 1le2 9065 1le3 9068 halflt1 9074 iap0 9080 addltmul 9093 elnnnn0c 9159 nn0ge2m1nn 9174 elnnz1 9214 zltp1le 9245 zleltp1 9246 recnz 9284 gtndiv 9286 3halfnz 9288 1lt10 9460 eluzp1m1 9489 eluzp1p1 9491 eluz2b2 9541 1rp 9593 divlt1lt 9660 divle1le 9661 nnledivrp 9702 0elunit 9922 1elunit 9923 divelunit 9938 lincmb01cmp 9939 iccf1o 9940 unitssre 9941 fzpreddisj 10006 fznatpl1 10011 fztpval 10018 qbtwnxr 10193 flqbi2 10226 fldiv4p1lem1div2 10240 flqdiv 10256 reexpcl 10472 reexpclzap 10475 expge0 10491 expge1 10492 expgt1 10493 bernneq 10575 bernneq2 10576 expnbnd 10578 expnlbnd 10579 expnlbnd2 10580 nn0ltexp2 10623 facwordi 10653 faclbnd3 10656 faclbnd6 10657 facavg 10659 cjexp 10835 re1 10839 im1 10840 rei 10841 imi 10842 caucvgre 10923 sqrt1 10988 sqrt2gt1lt2 10991 abs1 11014 caubnd2 11059 mulcn2 11253 reccn2ap 11254 expcnvap0 11443 geo2sum 11455 cvgratnnlemrate 11471 fprodge0 11578 fprodge1 11580 fprodle 11581 ere 11611 ege2le3 11612 efgt1 11638 resin4p 11659 recos4p 11660 sinbnd 11693 cosbnd 11694 sinbnd2 11695 cosbnd2 11696 ef01bndlem 11697 sin01bnd 11698 cos01bnd 11699 cos1bnd 11700 cos2bnd 11701 sin01gt0 11702 cos01gt0 11703 sin02gt0 11704 sincos1sgn 11705 cos12dec 11708 ene1 11725 eap1 11726 halfleoddlt 11831 flodddiv4 11871 isprm3 12050 sqnprm 12068 coprm 12076 phibndlem 12148 pythagtriplem3 12199 fldivp1 12278 pockthi 12288 exmidunben 12359 basendxnmulrndx 12509 setsmsbasg 13129 tgioo 13196 dveflem 13337 reeff1olem 13342 reeff1o 13344 cosz12 13351 sinhalfpilem 13362 tangtx 13409 sincos4thpi 13411 pigt3 13415 coskpi 13419 cos0pilt1 13423 ioocosf1o 13425 loge 13438 logrpap0b 13447 logdivlti 13452 2logb9irrALT 13542 sqrt2cxp2logb9e3 13543 lgsdir 13586 lgsne0 13589 lgsabs1 13590 lgsdinn0 13599 ex-fl 13616 cvgcmp2nlemabs 13921 iooref1o 13923 trilpolemclim 13925 trilpolemcl 13926 trilpolemisumle 13927 trilpolemeq1 13929 trilpolemlt1 13930 apdiff 13937 nconstwlpolemgt0 13952 |
Copyright terms: Public domain | W3C validator |