| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1re | GIF version | ||
| Description: 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| 1re | ⊢ 1 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1re 7973 | 1 ⊢ 1 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℝcr 7878 1c1 7880 |
| This theorem was proved from axioms: ax-1re 7973 |
| This theorem is referenced by: 0re 8026 1red 8041 1xr 8085 0lt1 8153 peano2re 8162 peano2rem 8293 0reALT 8323 0le1 8508 1le1 8599 inelr 8611 1ap0 8617 eqneg 8759 ltp1 8871 ltm1 8873 recgt0 8877 mulgt1 8890 ltmulgt11 8891 lemulge11 8893 reclt1 8923 recgt1 8924 recgt1i 8925 recp1lt1 8926 recreclt 8927 sup3exmid 8984 cju 8988 peano5nni 8993 nnssre 8994 1nn 9001 nnge1 9013 nnle1eq1 9014 nngt0 9015 nnnlt1 9016 nn1gt1 9024 nngt1ne1 9025 nnrecre 9027 nnrecgt0 9028 nnsub 9029 2re 9060 3re 9064 4re 9067 5re 9069 6re 9071 7re 9073 8re 9075 9re 9077 0le2 9080 2pos 9081 3pos 9084 4pos 9087 5pos 9090 6pos 9091 7pos 9092 8pos 9093 9pos 9094 neg1rr 9096 neg1lt0 9098 1lt2 9160 1lt3 9162 1lt4 9165 1lt5 9169 1lt6 9174 1lt7 9180 1lt8 9187 1lt9 9195 1ne2 9197 1ap2 9198 1le2 9199 1le3 9202 halflt1 9208 iap0 9214 addltmul 9228 elnnnn0c 9294 nn0ge2m1nn 9309 elnnz1 9349 zltp1le 9380 zleltp1 9381 recnz 9419 gtndiv 9421 3halfnz 9423 1lt10 9595 eluzp1m1 9625 eluzp1p1 9627 eluz2b2 9677 1rp 9732 divlt1lt 9799 divle1le 9800 nnledivrp 9841 0elunit 10061 1elunit 10062 divelunit 10077 lincmb01cmp 10078 iccf1o 10079 unitssre 10080 fzpreddisj 10146 fznatpl1 10151 fztpval 10158 qbtwnxr 10347 flqbi2 10381 fldiv4p1lem1div2 10395 flqdiv 10413 seqf1oglem1 10611 reexpcl 10648 reexpclzap 10651 expge0 10667 expge1 10668 expgt1 10669 bernneq 10752 bernneq2 10753 expnbnd 10755 expnlbnd 10756 expnlbnd2 10757 nn0ltexp2 10801 facwordi 10832 faclbnd3 10835 faclbnd6 10836 facavg 10838 cjexp 11058 re1 11062 im1 11063 rei 11064 imi 11065 caucvgre 11146 sqrt1 11211 sqrt2gt1lt2 11214 abs1 11237 caubnd2 11282 mulcn2 11477 reccn2ap 11478 expcnvap0 11667 geo2sum 11679 cvgratnnlemrate 11695 fprodge0 11802 fprodge1 11804 fprodle 11805 ere 11835 ege2le3 11836 efgt1 11862 resin4p 11883 recos4p 11884 sinbnd 11917 cosbnd 11918 sinbnd2 11919 cosbnd2 11920 ef01bndlem 11921 sin01bnd 11922 cos01bnd 11923 cos1bnd 11924 cos2bnd 11925 sinltxirr 11926 sin01gt0 11927 cos01gt0 11928 sin02gt0 11929 sincos1sgn 11930 cos12dec 11933 ene1 11950 eap1 11951 3dvds 12029 halfleoddlt 12059 flodddiv4 12101 isprm3 12286 sqnprm 12304 coprm 12312 phibndlem 12384 pythagtriplem3 12436 fldivp1 12517 pockthi 12527 exmidunben 12643 basendxnmulrndx 12811 starvndxnbasendx 12819 scandxnbasendx 12831 vscandxnbasendx 12836 ipndxnbasendx 12849 setsmsbasg 14715 tgioo 14790 dveflem 14962 reeff1olem 15007 reeff1o 15009 cosz12 15016 sinhalfpilem 15027 tangtx 15074 sincos4thpi 15076 pigt3 15080 coskpi 15084 cos0pilt1 15088 ioocosf1o 15090 loge 15103 logrpap0b 15112 logdivlti 15117 2logb9irrALT 15210 sqrt2cxp2logb9e3 15211 perfectlem2 15236 lgsdir 15276 lgsne0 15279 lgsabs1 15280 lgsdinn0 15289 gausslemma2dlem0i 15298 lgseisen 15315 2lgslem3 15342 ex-fl 15371 cvgcmp2nlemabs 15676 iooref1o 15678 trilpolemclim 15680 trilpolemcl 15681 trilpolemisumle 15682 trilpolemeq1 15684 trilpolemlt1 15685 apdiff 15692 nconstwlpolemgt0 15708 |
| Copyright terms: Public domain | W3C validator |