| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1re | GIF version | ||
| Description: 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| 1re | ⊢ 1 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1re 8018 | 1 ⊢ 1 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ℝcr 7923 1c1 7925 |
| This theorem was proved from axioms: ax-1re 8018 |
| This theorem is referenced by: 0re 8071 1red 8086 1xr 8130 0lt1 8198 peano2re 8207 peano2rem 8338 0reALT 8368 0le1 8553 1le1 8644 inelr 8656 1ap0 8662 eqneg 8804 ltp1 8916 ltm1 8918 recgt0 8922 mulgt1 8935 ltmulgt11 8936 lemulge11 8938 reclt1 8968 recgt1 8969 recgt1i 8970 recp1lt1 8971 recreclt 8972 sup3exmid 9029 cju 9033 peano5nni 9038 nnssre 9039 1nn 9046 nnge1 9058 nnle1eq1 9059 nngt0 9060 nnnlt1 9061 nn1gt1 9069 nngt1ne1 9070 nnrecre 9072 nnrecgt0 9073 nnsub 9074 2re 9105 3re 9109 4re 9112 5re 9114 6re 9116 7re 9118 8re 9120 9re 9122 0le2 9125 2pos 9126 3pos 9129 4pos 9132 5pos 9135 6pos 9136 7pos 9137 8pos 9138 9pos 9139 neg1rr 9141 neg1lt0 9143 1lt2 9205 1lt3 9207 1lt4 9210 1lt5 9214 1lt6 9219 1lt7 9225 1lt8 9232 1lt9 9240 1ne2 9242 1ap2 9243 1le2 9244 1le3 9247 halflt1 9253 iap0 9259 addltmul 9273 elnnnn0c 9339 nn0ge2m1nn 9354 elnnz1 9394 zltp1le 9426 zleltp1 9427 recnz 9465 gtndiv 9467 3halfnz 9469 1lt10 9641 eluzp1m1 9671 eluzp1p1 9673 eluz2b2 9723 1rp 9778 divlt1lt 9845 divle1le 9846 nnledivrp 9887 0elunit 10107 1elunit 10108 divelunit 10123 lincmb01cmp 10124 iccf1o 10125 unitssre 10126 fzpreddisj 10192 fznatpl1 10197 fztpval 10204 qbtwnxr 10398 flqbi2 10432 fldiv4p1lem1div2 10446 flqdiv 10464 seqf1oglem1 10662 reexpcl 10699 reexpclzap 10702 expge0 10718 expge1 10719 expgt1 10720 bernneq 10803 bernneq2 10804 expnbnd 10806 expnlbnd 10807 expnlbnd2 10808 nn0ltexp2 10852 facwordi 10883 faclbnd3 10886 faclbnd6 10887 facavg 10889 lsw0 11039 cjexp 11146 re1 11150 im1 11151 rei 11152 imi 11153 caucvgre 11234 sqrt1 11299 sqrt2gt1lt2 11302 abs1 11325 caubnd2 11370 mulcn2 11565 reccn2ap 11566 expcnvap0 11755 geo2sum 11767 cvgratnnlemrate 11783 fprodge0 11890 fprodge1 11892 fprodle 11893 ere 11923 ege2le3 11924 efgt1 11950 resin4p 11971 recos4p 11972 sinbnd 12005 cosbnd 12006 sinbnd2 12007 cosbnd2 12008 ef01bndlem 12009 sin01bnd 12010 cos01bnd 12011 cos1bnd 12012 cos2bnd 12013 sinltxirr 12014 sin01gt0 12015 cos01gt0 12016 sin02gt0 12017 sincos1sgn 12018 cos12dec 12021 ene1 12038 eap1 12039 3dvds 12117 halfleoddlt 12147 flodddiv4 12189 isprm3 12382 sqnprm 12400 coprm 12408 phibndlem 12480 pythagtriplem3 12532 fldivp1 12613 pockthi 12623 exmidunben 12739 basendxnmulrndx 12908 starvndxnbasendx 12916 scandxnbasendx 12928 vscandxnbasendx 12933 ipndxnbasendx 12946 basendxnocndx 12987 setsmsbasg 14893 tgioo 14968 dveflem 15140 reeff1olem 15185 reeff1o 15187 cosz12 15194 sinhalfpilem 15205 tangtx 15252 sincos4thpi 15254 pigt3 15258 coskpi 15262 cos0pilt1 15266 ioocosf1o 15268 loge 15281 logrpap0b 15290 logdivlti 15295 2logb9irrALT 15388 sqrt2cxp2logb9e3 15389 perfectlem2 15414 lgsdir 15454 lgsne0 15457 lgsabs1 15458 lgsdinn0 15467 gausslemma2dlem0i 15476 lgseisen 15493 2lgslem3 15520 ex-fl 15594 cvgcmp2nlemabs 15904 iooref1o 15906 trilpolemclim 15908 trilpolemcl 15909 trilpolemisumle 15910 trilpolemeq1 15912 trilpolemlt1 15913 apdiff 15920 nconstwlpolemgt0 15936 |
| Copyright terms: Public domain | W3C validator |