| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1re | GIF version | ||
| Description: 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.) |
| Ref | Expression |
|---|---|
| 1re | ⊢ 1 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1re 8089 | 1 ⊢ 1 ∈ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ℝcr 7994 1c1 7996 |
| This theorem was proved from axioms: ax-1re 8089 |
| This theorem is referenced by: 0re 8142 1red 8157 1xr 8201 0lt1 8269 peano2re 8278 peano2rem 8409 0reALT 8439 0le1 8624 1le1 8715 inelr 8727 1ap0 8733 eqneg 8875 ltp1 8987 ltm1 8989 recgt0 8993 mulgt1 9006 ltmulgt11 9007 lemulge11 9009 reclt1 9039 recgt1 9040 recgt1i 9041 recp1lt1 9042 recreclt 9043 sup3exmid 9100 cju 9104 peano5nni 9109 nnssre 9110 1nn 9117 nnge1 9129 nnle1eq1 9130 nngt0 9131 nnnlt1 9132 nn1gt1 9140 nngt1ne1 9141 nnrecre 9143 nnrecgt0 9144 nnsub 9145 2re 9176 3re 9180 4re 9183 5re 9185 6re 9187 7re 9189 8re 9191 9re 9193 0le2 9196 2pos 9197 3pos 9200 4pos 9203 5pos 9206 6pos 9207 7pos 9208 8pos 9209 9pos 9210 neg1rr 9212 neg1lt0 9214 1lt2 9276 1lt3 9278 1lt4 9281 1lt5 9285 1lt6 9290 1lt7 9296 1lt8 9303 1lt9 9311 1ne2 9313 1ap2 9314 1le2 9315 1le3 9318 halflt1 9324 iap0 9330 addltmul 9344 elnnnn0c 9410 nn0ge2m1nn 9425 elnnz1 9465 zltp1le 9497 zleltp1 9498 recnz 9536 gtndiv 9538 3halfnz 9540 1lt10 9712 eluzp1m1 9742 eluzp1p1 9744 eluz2b2 9794 1rp 9849 divlt1lt 9916 divle1le 9917 nnledivrp 9958 0elunit 10178 1elunit 10179 divelunit 10194 lincmb01cmp 10195 iccf1o 10196 unitssre 10197 fzpreddisj 10263 fznatpl1 10268 fztpval 10275 qbtwnxr 10472 flqbi2 10506 fldiv4p1lem1div2 10520 flqdiv 10538 seqf1oglem1 10736 reexpcl 10773 reexpclzap 10776 expge0 10792 expge1 10793 expgt1 10794 bernneq 10877 bernneq2 10878 expnbnd 10880 expnlbnd 10881 expnlbnd2 10882 nn0ltexp2 10926 facwordi 10957 faclbnd3 10960 faclbnd6 10961 facavg 10963 lsw0 11114 cjexp 11399 re1 11403 im1 11404 rei 11405 imi 11406 caucvgre 11487 sqrt1 11552 sqrt2gt1lt2 11555 abs1 11578 caubnd2 11623 mulcn2 11818 reccn2ap 11819 expcnvap0 12008 geo2sum 12020 cvgratnnlemrate 12036 fprodge0 12143 fprodge1 12145 fprodle 12146 ere 12176 ege2le3 12177 efgt1 12203 resin4p 12224 recos4p 12225 sinbnd 12258 cosbnd 12259 sinbnd2 12260 cosbnd2 12261 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 cos1bnd 12265 cos2bnd 12266 sinltxirr 12267 sin01gt0 12268 cos01gt0 12269 sin02gt0 12270 sincos1sgn 12271 cos12dec 12274 ene1 12291 eap1 12292 3dvds 12370 halfleoddlt 12400 flodddiv4 12442 isprm3 12635 sqnprm 12653 coprm 12661 phibndlem 12733 pythagtriplem3 12785 fldivp1 12866 pockthi 12876 exmidunben 12992 basendxnmulrndx 13162 starvndxnbasendx 13170 scandxnbasendx 13182 vscandxnbasendx 13187 ipndxnbasendx 13200 basendxnocndx 13241 setsmsbasg 15147 tgioo 15222 dveflem 15394 reeff1olem 15439 reeff1o 15441 cosz12 15448 sinhalfpilem 15459 tangtx 15506 sincos4thpi 15508 pigt3 15512 coskpi 15516 cos0pilt1 15520 ioocosf1o 15522 loge 15535 logrpap0b 15544 logdivlti 15549 2logb9irrALT 15642 sqrt2cxp2logb9e3 15643 perfectlem2 15668 lgsdir 15708 lgsne0 15711 lgsabs1 15712 lgsdinn0 15721 gausslemma2dlem0i 15730 lgseisen 15747 2lgslem3 15774 ex-fl 16047 cvgcmp2nlemabs 16359 iooref1o 16361 trilpolemclim 16363 trilpolemcl 16364 trilpolemisumle 16365 trilpolemeq1 16367 trilpolemlt1 16368 apdiff 16375 nconstwlpolemgt0 16391 |
| Copyright terms: Public domain | W3C validator |