![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1re | GIF version |
Description: 1 is a real number. (Contributed by Jim Kingdon, 13-Jan-2020.) |
Ref | Expression |
---|---|
1re | ⊢ 1 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1re 7904 | 1 ⊢ 1 ∈ ℝ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 ℝcr 7809 1c1 7811 |
This theorem was proved from axioms: ax-1re 7904 |
This theorem is referenced by: 0re 7956 1red 7971 1xr 8015 0lt1 8083 peano2re 8092 peano2rem 8223 0reALT 8253 0le1 8437 1le1 8528 inelr 8540 1ap0 8546 eqneg 8688 ltp1 8800 ltm1 8802 recgt0 8806 mulgt1 8819 ltmulgt11 8820 lemulge11 8822 reclt1 8852 recgt1 8853 recgt1i 8854 recp1lt1 8855 recreclt 8856 sup3exmid 8913 cju 8917 peano5nni 8921 nnssre 8922 1nn 8929 nnge1 8941 nnle1eq1 8942 nngt0 8943 nnnlt1 8944 nn1gt1 8952 nngt1ne1 8953 nnrecre 8955 nnrecgt0 8956 nnsub 8957 2re 8988 3re 8992 4re 8995 5re 8997 6re 8999 7re 9001 8re 9003 9re 9005 0le2 9008 2pos 9009 3pos 9012 4pos 9015 5pos 9018 6pos 9019 7pos 9020 8pos 9021 9pos 9022 neg1rr 9024 neg1lt0 9026 1lt2 9087 1lt3 9089 1lt4 9092 1lt5 9096 1lt6 9101 1lt7 9107 1lt8 9114 1lt9 9122 1ne2 9124 1ap2 9125 1le2 9126 1le3 9129 halflt1 9135 iap0 9141 addltmul 9154 elnnnn0c 9220 nn0ge2m1nn 9235 elnnz1 9275 zltp1le 9306 zleltp1 9307 recnz 9345 gtndiv 9347 3halfnz 9349 1lt10 9521 eluzp1m1 9550 eluzp1p1 9552 eluz2b2 9602 1rp 9656 divlt1lt 9723 divle1le 9724 nnledivrp 9765 0elunit 9985 1elunit 9986 divelunit 10001 lincmb01cmp 10002 iccf1o 10003 unitssre 10004 fzpreddisj 10070 fznatpl1 10075 fztpval 10082 qbtwnxr 10257 flqbi2 10290 fldiv4p1lem1div2 10304 flqdiv 10320 reexpcl 10536 reexpclzap 10539 expge0 10555 expge1 10556 expgt1 10557 bernneq 10640 bernneq2 10641 expnbnd 10643 expnlbnd 10644 expnlbnd2 10645 nn0ltexp2 10688 facwordi 10719 faclbnd3 10722 faclbnd6 10723 facavg 10725 cjexp 10901 re1 10905 im1 10906 rei 10907 imi 10908 caucvgre 10989 sqrt1 11054 sqrt2gt1lt2 11057 abs1 11080 caubnd2 11125 mulcn2 11319 reccn2ap 11320 expcnvap0 11509 geo2sum 11521 cvgratnnlemrate 11537 fprodge0 11644 fprodge1 11646 fprodle 11647 ere 11677 ege2le3 11678 efgt1 11704 resin4p 11725 recos4p 11726 sinbnd 11759 cosbnd 11760 sinbnd2 11761 cosbnd2 11762 ef01bndlem 11763 sin01bnd 11764 cos01bnd 11765 cos1bnd 11766 cos2bnd 11767 sin01gt0 11768 cos01gt0 11769 sin02gt0 11770 sincos1sgn 11771 cos12dec 11774 ene1 11791 eap1 11792 halfleoddlt 11898 flodddiv4 11938 isprm3 12117 sqnprm 12135 coprm 12143 phibndlem 12215 pythagtriplem3 12266 fldivp1 12345 pockthi 12355 exmidunben 12426 basendxnmulrndx 12591 starvndxnbasendx 12599 scandxnbasendx 12611 vscandxnbasendx 12616 ipndxnbasendx 12629 setsmsbasg 13949 tgioo 14016 dveflem 14157 reeff1olem 14162 reeff1o 14164 cosz12 14171 sinhalfpilem 14182 tangtx 14229 sincos4thpi 14231 pigt3 14235 coskpi 14239 cos0pilt1 14243 ioocosf1o 14245 loge 14258 logrpap0b 14267 logdivlti 14272 2logb9irrALT 14362 sqrt2cxp2logb9e3 14363 lgsdir 14406 lgsne0 14409 lgsabs1 14410 lgsdinn0 14419 ex-fl 14447 cvgcmp2nlemabs 14750 iooref1o 14752 trilpolemclim 14754 trilpolemcl 14755 trilpolemisumle 14756 trilpolemeq1 14758 trilpolemlt1 14759 apdiff 14766 nconstwlpolemgt0 14781 |
Copyright terms: Public domain | W3C validator |