Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 6cn | GIF version |
Description: The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
6cn | ⊢ 6 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6re 8938 | . 2 ⊢ 6 ∈ ℝ | |
2 | 1 | recni 7911 | 1 ⊢ 6 ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ℂcc 7751 6c6 8912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 |
This theorem is referenced by: 7m1e6 8981 6p2e8 9006 6p3e9 9007 halfpm6th 9077 6p4e10 9393 6t2e12 9425 6t3e18 9426 6t5e30 9428 5recm6rec 9465 efi4p 11658 ef01bndlem 11697 cos01bnd 11699 3lcm2e6woprm 12018 6lcm4e12 12019 sincos6thpi 13413 sincos3rdpi 13414 ex-exp 13618 ex-bc 13620 ex-gcd 13622 |
Copyright terms: Public domain | W3C validator |