ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6cn GIF version

Theorem 6cn 9188
Description: The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
6cn 6 ∈ ℂ

Proof of Theorem 6cn
StepHypRef Expression
1 6re 9187 . 2 6 ∈ ℝ
21recni 8154 1 6 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2200  cc 7993  6c6 9161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169
This theorem is referenced by:  7m1e6  9230  6p2e8  9256  6p3e9  9257  halfpm6th  9327  6p4e10  9645  6t2e12  9677  6t3e18  9678  6t5e30  9680  5recm6rec  9717  efi4p  12223  ef01bndlem  12262  cos01bnd  12264  3lcm2e6woprm  12603  6lcm4e12  12604  2exp8  12953  2exp11  12954  2exp16  12955  sincos6thpi  15510  sincos3rdpi  15511  2lgslem3d  15769  2lgsoddprmlem3d  15783  ex-exp  16049  ex-bc  16051  ex-gcd  16053
  Copyright terms: Public domain W3C validator