ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6cn GIF version

Theorem 6cn 9091
Description: The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
6cn 6 ∈ ℂ

Proof of Theorem 6cn
StepHypRef Expression
1 6re 9090 . 2 6 ∈ ℝ
21recni 8057 1 6 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2167  cc 7896  6c6 9064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7990  ax-1re 7992  ax-addrcl 7995
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072
This theorem is referenced by:  7m1e6  9133  6p2e8  9159  6p3e9  9160  halfpm6th  9230  6p4e10  9547  6t2e12  9579  6t3e18  9580  6t5e30  9582  5recm6rec  9619  efi4p  11901  ef01bndlem  11940  cos01bnd  11942  3lcm2e6woprm  12281  6lcm4e12  12282  2exp8  12631  2exp11  12632  2exp16  12633  sincos6thpi  15186  sincos3rdpi  15187  2lgslem3d  15445  2lgsoddprmlem3d  15459  ex-exp  15481  ex-bc  15483  ex-gcd  15485
  Copyright terms: Public domain W3C validator