ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6cn GIF version

Theorem 6cn 9117
Description: The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
6cn 6 ∈ ℂ

Proof of Theorem 6cn
StepHypRef Expression
1 6re 9116 . 2 6 ∈ ℝ
21recni 8083 1 6 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2175  cc 7922  6c6 9090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178  df-2 9094  df-3 9095  df-4 9096  df-5 9097  df-6 9098
This theorem is referenced by:  7m1e6  9159  6p2e8  9185  6p3e9  9186  halfpm6th  9256  6p4e10  9574  6t2e12  9606  6t3e18  9607  6t5e30  9609  5recm6rec  9646  efi4p  11999  ef01bndlem  12038  cos01bnd  12040  3lcm2e6woprm  12379  6lcm4e12  12380  2exp8  12729  2exp11  12730  2exp16  12731  sincos6thpi  15285  sincos3rdpi  15286  2lgslem3d  15544  2lgsoddprmlem3d  15558  ex-exp  15625  ex-bc  15627  ex-gcd  15629
  Copyright terms: Public domain W3C validator