ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6cn GIF version

Theorem 6cn 8759
Description: The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
6cn 6 ∈ ℂ

Proof of Theorem 6cn
StepHypRef Expression
1 6re 8758 . 2 6 ∈ ℝ
21recni 7742 1 6 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 1463  cc 7582  6c6 8732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-11 1467  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-resscn 7676  ax-1re 7678  ax-addrcl 7681
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-in 3045  df-ss 3052  df-2 8736  df-3 8737  df-4 8738  df-5 8739  df-6 8740
This theorem is referenced by:  6p2e8  8820  6p3e9  8821  halfpm6th  8891  6p4e10  9204  6t2e12  9236  6t3e18  9237  6t5e30  9239  efi4p  11323  ef01bndlem  11362  cos01bnd  11364  3lcm2e6woprm  11663  6lcm4e12  11664  ex-exp  12762  ex-bc  12764  ex-gcd  12766
  Copyright terms: Public domain W3C validator