ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  6cn GIF version

Theorem 6cn 9118
Description: The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
6cn 6 ∈ ℂ

Proof of Theorem 6cn
StepHypRef Expression
1 6re 9117 . 2 6 ∈ ℝ
21recni 8084 1 6 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2176  cc 7923  6c6 9091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099
This theorem is referenced by:  7m1e6  9160  6p2e8  9186  6p3e9  9187  halfpm6th  9257  6p4e10  9575  6t2e12  9607  6t3e18  9608  6t5e30  9610  5recm6rec  9647  efi4p  12028  ef01bndlem  12067  cos01bnd  12069  3lcm2e6woprm  12408  6lcm4e12  12409  2exp8  12758  2exp11  12759  2exp16  12760  sincos6thpi  15314  sincos3rdpi  15315  2lgslem3d  15573  2lgsoddprmlem3d  15587  ex-exp  15663  ex-bc  15665  ex-gcd  15667
  Copyright terms: Public domain W3C validator