| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 6cn | GIF version | ||
| Description: The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 6cn | ⊢ 6 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6re 9117 | . 2 ⊢ 6 ∈ ℝ | |
| 2 | 1 | recni 8084 | 1 ⊢ 6 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 ℂcc 7923 6c6 9091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 |
| This theorem is referenced by: 7m1e6 9160 6p2e8 9186 6p3e9 9187 halfpm6th 9257 6p4e10 9575 6t2e12 9607 6t3e18 9608 6t5e30 9610 5recm6rec 9647 efi4p 12028 ef01bndlem 12067 cos01bnd 12069 3lcm2e6woprm 12408 6lcm4e12 12409 2exp8 12758 2exp11 12759 2exp16 12760 sincos6thpi 15314 sincos3rdpi 15315 2lgslem3d 15573 2lgsoddprmlem3d 15587 ex-exp 15663 ex-bc 15665 ex-gcd 15667 |
| Copyright terms: Public domain | W3C validator |