![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8pos | GIF version |
Description: The number 8 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
8pos | ⊢ 0 < 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7re 9016 | . . 3 ⊢ 7 ∈ ℝ | |
2 | 1re 7970 | . . 3 ⊢ 1 ∈ ℝ | |
3 | 7pos 9035 | . . 3 ⊢ 0 < 7 | |
4 | 0lt1 8098 | . . 3 ⊢ 0 < 1 | |
5 | 1, 2, 3, 4 | addgt0ii 8462 | . 2 ⊢ 0 < (7 + 1) |
6 | df-8 8998 | . 2 ⊢ 8 = (7 + 1) | |
7 | 5, 6 | breqtrri 4042 | 1 ⊢ 0 < 8 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 4015 (class class class)co 5888 0cc0 7825 1c1 7826 + caddc 7828 < clt 8006 7c7 8989 8c8 8990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-pre-lttrn 7939 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-xp 4644 df-iota 5190 df-fv 5236 df-ov 5891 df-pnf 8008 df-mnf 8009 df-ltxr 8011 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-7 8997 df-8 8998 |
This theorem is referenced by: 9pos 9037 8th4div3 9152 lgsdir2lem1 14725 lgsdir2lem4 14728 lgsdir2lem5 14729 2lgsoddprmlem1 14749 2lgsoddprmlem2 14750 2lgsoddprmlem3a 14751 2lgsoddprmlem3b 14752 2lgsoddprmlem3c 14753 2lgsoddprmlem3d 14754 |
Copyright terms: Public domain | W3C validator |