![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8pos | GIF version |
Description: The number 8 is positive. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
8pos | ⊢ 0 < 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7re 9067 | . . 3 ⊢ 7 ∈ ℝ | |
2 | 1re 8020 | . . 3 ⊢ 1 ∈ ℝ | |
3 | 7pos 9086 | . . 3 ⊢ 0 < 7 | |
4 | 0lt1 8148 | . . 3 ⊢ 0 < 1 | |
5 | 1, 2, 3, 4 | addgt0ii 8512 | . 2 ⊢ 0 < (7 + 1) |
6 | df-8 9049 | . 2 ⊢ 8 = (7 + 1) | |
7 | 5, 6 | breqtrri 4057 | 1 ⊢ 0 < 8 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 4030 (class class class)co 5919 0cc0 7874 1c1 7875 + caddc 7877 < clt 8056 7c7 9040 8c8 9041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-xp 4666 df-iota 5216 df-fv 5263 df-ov 5922 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 |
This theorem is referenced by: 9pos 9088 8th4div3 9204 lgsdir2lem1 15185 lgsdir2lem4 15188 lgsdir2lem5 15189 2lgslem3a1 15254 2lgslem3b1 15255 2lgslem3c1 15256 2lgsoddprmlem1 15262 2lgsoddprmlem2 15263 2lgsoddprmlem3a 15264 2lgsoddprmlem3b 15265 2lgsoddprmlem3c 15266 2lgsoddprmlem3d 15267 |
Copyright terms: Public domain | W3C validator |