ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0le0 GIF version

Theorem 0le0 8565
Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
0le0 0 ≤ 0

Proof of Theorem 0le0
StepHypRef Expression
1 0re 7542 . 2 0 ∈ ℝ
21leidi 8017 1 0 ≤ 0
Colors of variables: wff set class
Syntax hints:   class class class wbr 3851  0cc0 7404  cle 7577
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7490  ax-resscn 7491  ax-1re 7493  ax-addrcl 7496  ax-rnegex 7508  ax-pre-ltirr 7511
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-xp 4457  df-cnv 4459  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582
This theorem is referenced by:  nn0ge0  8752  nn0ledivnn  9292  0e0icopnf  9451  0e0iccpnf  9452  0elunit  9457  q0mod  9816  exp0  10013  sqrt0rlem  10490  sqrt00  10527  fsumabs  10913
  Copyright terms: Public domain W3C validator