| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le0 | GIF version | ||
| Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0le0 | ⊢ 0 ≤ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8142 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1 | leidi 8628 | 1 ⊢ 0 ≤ 0 |
| Colors of variables: wff set class |
| Syntax hints: class class class wbr 4082 0cc0 7995 ≤ cle 8178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-rnegex 8104 ax-pre-ltirr 8107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 |
| This theorem is referenced by: nn0ge0 9390 nn0ledivnn 9959 xsubge0 10073 0e0icopnf 10171 0e0iccpnf 10172 0elunit 10178 q0mod 10572 exp0 10760 sqrt0rlem 11509 sqrt00 11546 xrmaxadd 11767 fsumabs 11971 pcmptdvds 12863 trilpolemclim 16363 trilpolemlt1 16368 nconstwlpolemgt0 16391 |
| Copyright terms: Public domain | W3C validator |