Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9t9e81 | GIF version |
Description: 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9t9e81 | ⊢ (9 · 9) = ;81 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 9159 | . 2 ⊢ 9 ∈ ℕ0 | |
2 | 8nn0 9158 | . 2 ⊢ 8 ∈ ℕ0 | |
3 | df-9 8944 | . 2 ⊢ 9 = (8 + 1) | |
4 | 9t8e72 9470 | . 2 ⊢ (9 · 8) = ;72 | |
5 | 7nn0 9157 | . . 3 ⊢ 7 ∈ ℕ0 | |
6 | 2nn0 9152 | . . 3 ⊢ 2 ∈ ℕ0 | |
7 | eqid 2170 | . . 3 ⊢ ;72 = ;72 | |
8 | 7p1e8 9017 | . . 3 ⊢ (7 + 1) = 8 | |
9 | 1nn0 9151 | . . 3 ⊢ 1 ∈ ℕ0 | |
10 | 9cn 8966 | . . . 4 ⊢ 9 ∈ ℂ | |
11 | 2cn 8949 | . . . 4 ⊢ 2 ∈ ℂ | |
12 | 9p2e11 9429 | . . . 4 ⊢ (9 + 2) = ;11 | |
13 | 10, 11, 12 | addcomli 8064 | . . 3 ⊢ (2 + 9) = ;11 |
14 | 5, 6, 1, 7, 8, 9, 13 | decaddci 9403 | . 2 ⊢ (;72 + 9) = ;81 |
15 | 1, 2, 3, 4, 14 | 4t3lem 9439 | 1 ⊢ (9 · 9) = ;81 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 (class class class)co 5853 1c1 7775 · cmul 7779 2c2 8929 7c7 8934 8c8 8935 9c9 8936 ;cdc 9343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-n0 9136 df-dec 9344 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |