Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9t9e81 | GIF version |
Description: 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9t9e81 | ⊢ (9 · 9) = ;81 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 9093 | . 2 ⊢ 9 ∈ ℕ0 | |
2 | 8nn0 9092 | . 2 ⊢ 8 ∈ ℕ0 | |
3 | df-9 8878 | . 2 ⊢ 9 = (8 + 1) | |
4 | 9t8e72 9401 | . 2 ⊢ (9 · 8) = ;72 | |
5 | 7nn0 9091 | . . 3 ⊢ 7 ∈ ℕ0 | |
6 | 2nn0 9086 | . . 3 ⊢ 2 ∈ ℕ0 | |
7 | eqid 2154 | . . 3 ⊢ ;72 = ;72 | |
8 | 7p1e8 8951 | . . 3 ⊢ (7 + 1) = 8 | |
9 | 1nn0 9085 | . . 3 ⊢ 1 ∈ ℕ0 | |
10 | 9cn 8900 | . . . 4 ⊢ 9 ∈ ℂ | |
11 | 2cn 8883 | . . . 4 ⊢ 2 ∈ ℂ | |
12 | 9p2e11 9360 | . . . 4 ⊢ (9 + 2) = ;11 | |
13 | 10, 11, 12 | addcomli 7999 | . . 3 ⊢ (2 + 9) = ;11 |
14 | 5, 6, 1, 7, 8, 9, 13 | decaddci 9334 | . 2 ⊢ (;72 + 9) = ;81 |
15 | 1, 2, 3, 4, 14 | 4t3lem 9370 | 1 ⊢ (9 · 9) = ;81 |
Colors of variables: wff set class |
Syntax hints: = wceq 1332 (class class class)co 5814 1c1 7712 · cmul 7716 2c2 8863 7c7 8868 8c8 8869 9c9 8870 ;cdc 9274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-sub 8027 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-5 8874 df-6 8875 df-7 8876 df-8 8877 df-9 8878 df-n0 9070 df-dec 9275 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |