![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qnumdencl | GIF version |
Description: Lemma for qnumcl 11711 and qdencl 11712. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
qnumdencl | ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qredeu 11624 | . . 3 ⊢ (𝐴 ∈ ℚ → ∃!𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) | |
2 | riotacl 5698 | . . 3 ⊢ (∃!𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))) → (℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) ∈ (ℤ × ℕ)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ ℚ → (℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) ∈ (ℤ × ℕ)) |
4 | elxp6 6021 | . . 3 ⊢ ((℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) ∈ (ℤ × ℕ) ↔ ((℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) = 〈(1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))), (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))〉 ∧ ((1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ ∧ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ))) | |
5 | qnumval 11708 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))) | |
6 | 5 | eleq1d 2183 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ↔ (1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ)) |
7 | qdenval 11709 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))) | |
8 | 7 | eleq1d 2183 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) ∈ ℕ ↔ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ)) |
9 | 6, 8 | anbi12d 462 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ) ↔ ((1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ ∧ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ))) |
10 | 9 | biimprd 157 | . . . 4 ⊢ (𝐴 ∈ ℚ → (((1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ ∧ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ) → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ))) |
11 | 10 | adantld 274 | . . 3 ⊢ (𝐴 ∈ ℚ → (((℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) = 〈(1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))), (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))〉 ∧ ((1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ ∧ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ)) → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ))) |
12 | 4, 11 | syl5bi 151 | . 2 ⊢ (𝐴 ∈ ℚ → ((℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) ∈ (ℤ × ℕ) → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ))) |
13 | 3, 12 | mpd 13 | 1 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 ∃!wreu 2392 〈cop 3496 × cxp 4497 ‘cfv 5081 ℩crio 5683 (class class class)co 5728 1st c1st 5990 2nd c2nd 5991 1c1 7548 / cdiv 8345 ℕcn 8630 ℤcz 8958 ℚcq 9313 gcd cgcd 11483 numercnumer 11704 denomcdenom 11705 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-mulrcl 7644 ax-addcom 7645 ax-mulcom 7646 ax-addass 7647 ax-mulass 7648 ax-distr 7649 ax-i2m1 7650 ax-0lt1 7651 ax-1rid 7652 ax-0id 7653 ax-rnegex 7654 ax-precex 7655 ax-cnre 7656 ax-pre-ltirr 7657 ax-pre-ltwlin 7658 ax-pre-lttrn 7659 ax-pre-apti 7660 ax-pre-ltadd 7661 ax-pre-mulgt0 7662 ax-pre-mulext 7663 ax-arch 7664 ax-caucvg 7665 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rmo 2398 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-if 3441 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-po 4178 df-iso 4179 df-iord 4248 df-on 4250 df-ilim 4251 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-frec 6242 df-sup 6823 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-reap 8255 df-ap 8262 df-div 8346 df-inn 8631 df-2 8689 df-3 8690 df-4 8691 df-n0 8882 df-z 8959 df-uz 9229 df-q 9314 df-rp 9344 df-fz 9684 df-fzo 9813 df-fl 9936 df-mod 9989 df-seqfrec 10112 df-exp 10186 df-cj 10507 df-re 10508 df-im 10509 df-rsqrt 10662 df-abs 10663 df-dvds 11342 df-gcd 11484 df-numer 11706 df-denom 11707 |
This theorem is referenced by: qnumcl 11711 qdencl 11712 |
Copyright terms: Public domain | W3C validator |