Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qnumdencl | GIF version |
Description: Lemma for qnumcl 12079 and qdencl 12080. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
qnumdencl | ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qredeu 11990 | . . 3 ⊢ (𝐴 ∈ ℚ → ∃!𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) | |
2 | riotacl 5797 | . . 3 ⊢ (∃!𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))) → (℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) ∈ (ℤ × ℕ)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ ℚ → (℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) ∈ (ℤ × ℕ)) |
4 | elxp6 6120 | . . 3 ⊢ ((℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) ∈ (ℤ × ℕ) ↔ ((℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) = 〈(1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))), (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))〉 ∧ ((1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ ∧ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ))) | |
5 | qnumval 12076 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → (numer‘𝐴) = (1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))) | |
6 | 5 | eleq1d 2226 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ↔ (1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ)) |
7 | qdenval 12077 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → (denom‘𝐴) = (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))) | |
8 | 7 | eleq1d 2226 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) ∈ ℕ ↔ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ)) |
9 | 6, 8 | anbi12d 465 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ) ↔ ((1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ ∧ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ))) |
10 | 9 | biimprd 157 | . . . 4 ⊢ (𝐴 ∈ ℚ → (((1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ ∧ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ) → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ))) |
11 | 10 | adantld 276 | . . 3 ⊢ (𝐴 ∈ ℚ → (((℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) = 〈(1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))), (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))))〉 ∧ ((1st ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℤ ∧ (2nd ‘(℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎))))) ∈ ℕ)) → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ))) |
12 | 4, 11 | syl5bi 151 | . 2 ⊢ (𝐴 ∈ ℚ → ((℩𝑎 ∈ (ℤ × ℕ)(((1st ‘𝑎) gcd (2nd ‘𝑎)) = 1 ∧ 𝐴 = ((1st ‘𝑎) / (2nd ‘𝑎)))) ∈ (ℤ × ℕ) → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ))) |
13 | 3, 12 | mpd 13 | 1 ⊢ (𝐴 ∈ ℚ → ((numer‘𝐴) ∈ ℤ ∧ (denom‘𝐴) ∈ ℕ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ∃!wreu 2437 〈cop 3564 × cxp 4587 ‘cfv 5173 ℩crio 5782 (class class class)co 5827 1st c1st 6089 2nd c2nd 6090 1c1 7736 / cdiv 8550 ℕcn 8839 ℤcz 9173 ℚcq 9535 gcd cgcd 11842 numercnumer 12072 denomcdenom 12073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4082 ax-sep 4085 ax-nul 4093 ax-pow 4138 ax-pr 4172 ax-un 4396 ax-setind 4499 ax-iinf 4550 ax-cnex 7826 ax-resscn 7827 ax-1cn 7828 ax-1re 7829 ax-icn 7830 ax-addcl 7831 ax-addrcl 7832 ax-mulcl 7833 ax-mulrcl 7834 ax-addcom 7835 ax-mulcom 7836 ax-addass 7837 ax-mulass 7838 ax-distr 7839 ax-i2m1 7840 ax-0lt1 7841 ax-1rid 7842 ax-0id 7843 ax-rnegex 7844 ax-precex 7845 ax-cnre 7846 ax-pre-ltirr 7847 ax-pre-ltwlin 7848 ax-pre-lttrn 7849 ax-pre-apti 7850 ax-pre-ltadd 7851 ax-pre-mulgt0 7852 ax-pre-mulext 7853 ax-arch 7854 ax-caucvg 7855 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-if 3507 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-iun 3853 df-br 3968 df-opab 4029 df-mpt 4030 df-tr 4066 df-id 4256 df-po 4259 df-iso 4260 df-iord 4329 df-on 4331 df-ilim 4332 df-suc 4334 df-iom 4553 df-xp 4595 df-rel 4596 df-cnv 4597 df-co 4598 df-dm 4599 df-rn 4600 df-res 4601 df-ima 4602 df-iota 5138 df-fun 5175 df-fn 5176 df-f 5177 df-f1 5178 df-fo 5179 df-f1o 5180 df-fv 5181 df-riota 5783 df-ov 5830 df-oprab 5831 df-mpo 5832 df-1st 6091 df-2nd 6092 df-recs 6255 df-frec 6341 df-sup 6931 df-pnf 7917 df-mnf 7918 df-xr 7919 df-ltxr 7920 df-le 7921 df-sub 8053 df-neg 8054 df-reap 8455 df-ap 8462 df-div 8551 df-inn 8840 df-2 8898 df-3 8899 df-4 8900 df-n0 9097 df-z 9174 df-uz 9446 df-q 9536 df-rp 9568 df-fz 9920 df-fzo 10052 df-fl 10179 df-mod 10232 df-seqfrec 10355 df-exp 10429 df-cj 10754 df-re 10755 df-im 10756 df-rsqrt 10910 df-abs 10911 df-dvds 11696 df-gcd 11843 df-numer 12074 df-denom 12075 |
This theorem is referenced by: qnumcl 12079 qdencl 12080 |
Copyright terms: Public domain | W3C validator |