ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzgtdifelfzo GIF version

Theorem eluzgtdifelfzo 10264
Description: Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
Assertion
Ref Expression
eluzgtdifelfzo ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → (𝑁𝐴) ∈ (0..^(𝑁𝐵))))

Proof of Theorem eluzgtdifelfzo
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → 𝑁 ∈ (ℤ𝐴))
21adantl 277 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ (ℤ𝐴))
3 simpl 109 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
43adantr 276 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐴 ∈ ℤ)
5 eluzelz 9601 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℤ)
65ad2antrr 488 . . . . . . 7 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝑁 ∈ ℤ)
7 simprr 531 . . . . . . 7 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℤ)
86, 7zsubcld 9444 . . . . . 6 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝑁𝐵) ∈ ℤ)
98ancoms 268 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁𝐵) ∈ ℤ)
104, 9zaddcld 9443 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝐴 + (𝑁𝐵)) ∈ ℤ)
11 zre 9321 . . . . . . . . 9 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
12 zre 9321 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
13 posdif 8474 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ 0 < (𝐴𝐵)))
1413biimpd 144 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → 0 < (𝐴𝐵)))
1511, 12, 14syl2anr 290 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → 0 < (𝐴𝐵)))
1615adantld 278 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → 0 < (𝐴𝐵)))
1716imp 124 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 0 < (𝐴𝐵))
18 resubcl 8283 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
1912, 11, 18syl2an 289 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℝ)
2019adantr 276 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝐴𝐵) ∈ ℝ)
21 eluzelre 9602 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℝ)
2221ad2antrl 490 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ ℝ)
2320, 22ltaddposd 8548 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (0 < (𝐴𝐵) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
2417, 23mpbid 147 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 < (𝑁 + (𝐴𝐵)))
25 zcn 9322 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2625ad2antrr 488 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐴 ∈ ℂ)
27 eluzelcn 9603 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℂ)
2827ad2antrl 490 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ ℂ)
29 zcn 9322 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
3029adantl 277 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
3130adantr 276 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐵 ∈ ℂ)
32 addsub12 8232 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝑁𝐵)) = (𝑁 + (𝐴𝐵)))
3332breq2d 4041 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑁 < (𝐴 + (𝑁𝐵)) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
3426, 28, 31, 33syl3anc 1249 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁 < (𝐴 + (𝑁𝐵)) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
3524, 34mpbird 167 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 < (𝐴 + (𝑁𝐵)))
36 elfzo2 10216 . . . 4 (𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))) ↔ (𝑁 ∈ (ℤ𝐴) ∧ (𝐴 + (𝑁𝐵)) ∈ ℤ ∧ 𝑁 < (𝐴 + (𝑁𝐵))))
372, 10, 35, 36syl3anbrc 1183 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))))
38 fzosubel3 10263 . . 3 ((𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))) ∧ (𝑁𝐵) ∈ ℤ) → (𝑁𝐴) ∈ (0..^(𝑁𝐵)))
3937, 9, 38syl2anc 411 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁𝐴) ∈ (0..^(𝑁𝐵)))
4039ex 115 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → (𝑁𝐴) ∈ (0..^(𝑁𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2164   class class class wbr 4029  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872   + caddc 7875   < clt 8054  cmin 8190  cz 9317  cuz 9592  ..^cfzo 10208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209
This theorem is referenced by:  ige2m2fzo  10265
  Copyright terms: Public domain W3C validator