ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzgtdifelfzo GIF version

Theorem eluzgtdifelfzo 9981
Description: Membership of the difference of integers in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 17-Sep-2018.)
Assertion
Ref Expression
eluzgtdifelfzo ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → (𝑁𝐴) ∈ (0..^(𝑁𝐵))))

Proof of Theorem eluzgtdifelfzo
StepHypRef Expression
1 simpl 108 . . . . 5 ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → 𝑁 ∈ (ℤ𝐴))
21adantl 275 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ (ℤ𝐴))
3 simpl 108 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
43adantr 274 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐴 ∈ ℤ)
5 eluzelz 9342 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℤ)
65ad2antrr 479 . . . . . . 7 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝑁 ∈ ℤ)
7 simprr 521 . . . . . . 7 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → 𝐵 ∈ ℤ)
86, 7zsubcld 9185 . . . . . 6 (((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)) → (𝑁𝐵) ∈ ℤ)
98ancoms 266 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁𝐵) ∈ ℤ)
104, 9zaddcld 9184 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝐴 + (𝑁𝐵)) ∈ ℤ)
11 zre 9065 . . . . . . . . 9 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
12 zre 9065 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
13 posdif 8224 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ 0 < (𝐴𝐵)))
1413biimpd 143 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → 0 < (𝐴𝐵)))
1511, 12, 14syl2anr 288 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < 𝐴 → 0 < (𝐴𝐵)))
1615adantld 276 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → 0 < (𝐴𝐵)))
1716imp 123 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 0 < (𝐴𝐵))
18 resubcl 8033 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) ∈ ℝ)
1912, 11, 18syl2an 287 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℝ)
2019adantr 274 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝐴𝐵) ∈ ℝ)
21 eluzelre 9343 . . . . . . . 8 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℝ)
2221ad2antrl 481 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ ℝ)
2320, 22ltaddposd 8298 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (0 < (𝐴𝐵) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
2417, 23mpbid 146 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 < (𝑁 + (𝐴𝐵)))
25 zcn 9066 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2625ad2antrr 479 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐴 ∈ ℂ)
27 eluzelcn 9344 . . . . . . 7 (𝑁 ∈ (ℤ𝐴) → 𝑁 ∈ ℂ)
2827ad2antrl 481 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ ℂ)
29 zcn 9066 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
3029adantl 275 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℂ)
3130adantr 274 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝐵 ∈ ℂ)
32 addsub12 7982 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝑁𝐵)) = (𝑁 + (𝐴𝐵)))
3332breq2d 3941 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑁 < (𝐴 + (𝑁𝐵)) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
3426, 28, 31, 33syl3anc 1216 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁 < (𝐴 + (𝑁𝐵)) ↔ 𝑁 < (𝑁 + (𝐴𝐵))))
3524, 34mpbird 166 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 < (𝐴 + (𝑁𝐵)))
36 elfzo2 9934 . . . 4 (𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))) ↔ (𝑁 ∈ (ℤ𝐴) ∧ (𝐴 + (𝑁𝐵)) ∈ ℤ ∧ 𝑁 < (𝐴 + (𝑁𝐵))))
372, 10, 35, 36syl3anbrc 1165 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → 𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))))
38 fzosubel3 9980 . . 3 ((𝑁 ∈ (𝐴..^(𝐴 + (𝑁𝐵))) ∧ (𝑁𝐵) ∈ ℤ) → (𝑁𝐴) ∈ (0..^(𝑁𝐵)))
3937, 9, 38syl2anc 408 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴)) → (𝑁𝐴) ∈ (0..^(𝑁𝐵)))
4039ex 114 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁 ∈ (ℤ𝐴) ∧ 𝐵 < 𝐴) → (𝑁𝐴) ∈ (0..^(𝑁𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7625  cr 7626  0cc0 7627   + caddc 7630   < clt 7807  cmin 7940  cz 9061  cuz 9333  ..^cfzo 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-inn 8728  df-n0 8985  df-z 9062  df-uz 9334  df-fz 9798  df-fzo 9927
This theorem is referenced by:  ige2m2fzo  9982
  Copyright terms: Public domain W3C validator