ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrivcvgap GIF version

Theorem ntrivcvgap 11540
Description: A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvg.1 𝑍 = (ℤ𝑀)
ntrivcvgap.2 (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
ntrivcvg.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
ntrivcvgap (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝐹,𝑛,𝑦   𝑘,𝑀,𝑛,𝑦   𝑘,𝑍,𝑦   𝜑,𝑘,𝑛,𝑦
Allowed substitution hint:   𝑍(𝑛)

Proof of Theorem ntrivcvgap
StepHypRef Expression
1 ntrivcvgap.2 . 2 (𝜑 → ∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
2 uzm1 9547 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
3 ntrivcvg.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
42, 3eleq2s 2272 . . . . . . . 8 (𝑛𝑍 → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
54ad2antlr 489 . . . . . . 7 (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)))
6 seqeq1 10434 . . . . . . . . . . 11 (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹))
76breq1d 4010 . . . . . . . . . 10 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦))
8 seqex 10433 . . . . . . . . . . 11 seq𝑀( · , 𝐹) ∈ V
9 vex 2740 . . . . . . . . . . 11 𝑦 ∈ V
108, 9breldm 4827 . . . . . . . . . 10 (seq𝑀( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
117, 10syl6bi 163 . . . . . . . . 9 (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
1211adantld 278 . . . . . . . 8 (𝑛 = 𝑀 → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
13 eluzel2 9522 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1413, 3eleq2s 2272 . . . . . . . . . . . . . . . 16 (𝑛𝑍𝑀 ∈ ℤ)
1514ad3antlr 493 . . . . . . . . . . . . . . 15 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → 𝑀 ∈ ℤ)
16 ntrivcvg.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1716ad5ant15 521 . . . . . . . . . . . . . . 15 (((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
183, 15, 17prodf 11530 . . . . . . . . . . . . . 14 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹):𝑍⟶ℂ)
19 simplr 528 . . . . . . . . . . . . . 14 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (𝑛 − 1) ∈ 𝑍)
2018, 19ffvelcdmd 5648 . . . . . . . . . . . . 13 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (seq𝑀( · , 𝐹)‘(𝑛 − 1)) ∈ ℂ)
21 climcl 11274 . . . . . . . . . . . . . 14 (seq𝑛( · , 𝐹) ⇝ 𝑦𝑦 ∈ ℂ)
2221adantl 277 . . . . . . . . . . . . 13 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → 𝑦 ∈ ℂ)
2320, 22mulcld 7968 . . . . . . . . . . . 12 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦) ∈ ℂ)
24 uzssz 9536 . . . . . . . . . . . . . . . . . . . 20 (ℤ𝑀) ⊆ ℤ
253, 24eqsstri 3187 . . . . . . . . . . . . . . . . . . 19 𝑍 ⊆ ℤ
26 simplr 528 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛𝑍)
2725, 26sselid 3153 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ ℤ)
2827zcnd 9365 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ ℂ)
29 1cnd 7964 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 1 ∈ ℂ)
3028, 29npcand 8262 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → ((𝑛 − 1) + 1) = 𝑛)
3130seqeq1d 10437 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → seq((𝑛 − 1) + 1)( · , 𝐹) = seq𝑛( · , 𝐹))
3231breq1d 4010 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → (seq((𝑛 − 1) + 1)( · , 𝐹) ⇝ 𝑦 ↔ seq𝑛( · , 𝐹) ⇝ 𝑦))
3332biimpar 297 . . . . . . . . . . . . 13 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq((𝑛 − 1) + 1)( · , 𝐹) ⇝ 𝑦)
343, 19, 17, 33clim2prod 11531 . . . . . . . . . . . 12 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦))
35 breldmg 4829 . . . . . . . . . . . 12 ((seq𝑀( · , 𝐹) ∈ V ∧ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦) ∈ ℂ ∧ seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦)) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
368, 23, 34, 35mp3an2i 1342 . . . . . . . . . . 11 ((((𝜑𝑛𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3736an32s 568 . . . . . . . . . 10 ((((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑛 − 1) ∈ 𝑍) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
3837expcom 116 . . . . . . . . 9 ((𝑛 − 1) ∈ 𝑍 → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
393eqcomi 2181 . . . . . . . . 9 (ℤ𝑀) = 𝑍
4038, 39eleq2s 2272 . . . . . . . 8 ((𝑛 − 1) ∈ (ℤ𝑀) → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
4112, 40jaoi 716 . . . . . . 7 ((𝑛 = 𝑀 ∨ (𝑛 − 1) ∈ (ℤ𝑀)) → (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
425, 41mpcom 36 . . . . . 6 (((𝜑𝑛𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )
4342ex 115 . . . . 5 ((𝜑𝑛𝑍) → (seq𝑛( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
4443adantld 278 . . . 4 ((𝜑𝑛𝑍) → ((𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
4544exlimdv 1819 . . 3 ((𝜑𝑛𝑍) → (∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
4645rexlimdva 2594 . 2 (𝜑 → (∃𝑛𝑍𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ))
471, 46mpd 13 1 (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708   = wceq 1353  wex 1492  wcel 2148  wrex 2456  Vcvv 2737   class class class wbr 4000  dom cdm 4623  cfv 5212  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807  cmin 8118   # cap 8528  cz 9242  cuz 9517  seqcseq 10431  cli 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator