Proof of Theorem ntrivcvgap
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ntrivcvgap.2 | 
. 2
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) | 
| 2 |   | uzm1 9632 | 
. . . . . . . . 9
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈
(ℤ≥‘𝑀))) | 
| 3 |   | ntrivcvg.1 | 
. . . . . . . . 9
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 4 | 2, 3 | eleq2s 2291 | 
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈
(ℤ≥‘𝑀))) | 
| 5 | 4 | ad2antlr 489 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (𝑛 = 𝑀 ∨ (𝑛 − 1) ∈
(ℤ≥‘𝑀))) | 
| 6 |   | seqeq1 10542 | 
. . . . . . . . . . 11
⊢ (𝑛 = 𝑀 → seq𝑛( · , 𝐹) = seq𝑀( · , 𝐹)) | 
| 7 | 6 | breq1d 4043 | 
. . . . . . . . . 10
⊢ (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑀( · , 𝐹) ⇝ 𝑦)) | 
| 8 |   | seqex 10541 | 
. . . . . . . . . . 11
⊢ seq𝑀( · , 𝐹) ∈ V | 
| 9 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑦 ∈ V | 
| 10 | 8, 9 | breldm 4870 | 
. . . . . . . . . 10
⊢ (seq𝑀( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ ) | 
| 11 | 7, 10 | biimtrdi 163 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑀 → (seq𝑛( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ )) | 
| 12 | 11 | adantld 278 | 
. . . . . . . 8
⊢ (𝑛 = 𝑀 → (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )) | 
| 13 |   | eluzel2 9606 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | 
| 14 | 13, 3 | eleq2s 2291 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ 𝑍 → 𝑀 ∈ ℤ) | 
| 15 | 14 | ad3antlr 493 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → 𝑀 ∈ ℤ) | 
| 16 |   | ntrivcvg.3 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | 
| 17 | 16 | ad5ant15 521 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | 
| 18 | 3, 15, 17 | prodf 11703 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹):𝑍⟶ℂ) | 
| 19 |   | simplr 528 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (𝑛 − 1) ∈ 𝑍) | 
| 20 | 18, 19 | ffvelcdmd 5698 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → (seq𝑀( · , 𝐹)‘(𝑛 − 1)) ∈ ℂ) | 
| 21 |   | climcl 11447 | 
. . . . . . . . . . . . . 14
⊢ (seq𝑛( · , 𝐹) ⇝ 𝑦 → 𝑦 ∈ ℂ) | 
| 22 | 21 | adantl 277 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → 𝑦 ∈ ℂ) | 
| 23 | 20, 22 | mulcld 8047 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦) ∈ ℂ) | 
| 24 |   | uzssz 9621 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
(ℤ≥‘𝑀) ⊆ ℤ | 
| 25 | 3, 24 | eqsstri 3215 | 
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑍 ⊆
ℤ | 
| 26 |   | simplr 528 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ 𝑍) | 
| 27 | 25, 26 | sselid 3181 | 
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ ℤ) | 
| 28 | 27 | zcnd 9449 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 𝑛 ∈ ℂ) | 
| 29 |   | 1cnd 8042 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → 1 ∈ ℂ) | 
| 30 | 28, 29 | npcand 8341 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → ((𝑛 − 1) + 1) = 𝑛) | 
| 31 | 30 | seqeq1d 10545 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → seq((𝑛 − 1) + 1)( · , 𝐹) = seq𝑛( · , 𝐹)) | 
| 32 | 31 | breq1d 4043 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) → (seq((𝑛 − 1) + 1)( · , 𝐹) ⇝ 𝑦 ↔ seq𝑛( · , 𝐹) ⇝ 𝑦)) | 
| 33 | 32 | biimpar 297 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq((𝑛 − 1) + 1)( · , 𝐹) ⇝ 𝑦) | 
| 34 | 3, 19, 17, 33 | clim2prod 11704 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦)) | 
| 35 |   | breldmg 4872 | 
. . . . . . . . . . . 12
⊢
((seq𝑀( · ,
𝐹) ∈ V ∧
((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦) ∈ ℂ ∧ seq𝑀( · , 𝐹) ⇝ ((seq𝑀( · , 𝐹)‘(𝑛 − 1)) · 𝑦)) → seq𝑀( · , 𝐹) ∈ dom ⇝ ) | 
| 36 | 8, 23, 34, 35 | mp3an2i 1353 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ (𝑛 − 1) ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ) | 
| 37 | 36 | an32s 568 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ∧ (𝑛 − 1) ∈ 𝑍) → seq𝑀( · , 𝐹) ∈ dom ⇝ ) | 
| 38 | 37 | expcom 116 | 
. . . . . . . . 9
⊢ ((𝑛 − 1) ∈ 𝑍 → (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )) | 
| 39 | 3 | eqcomi 2200 | 
. . . . . . . . 9
⊢
(ℤ≥‘𝑀) = 𝑍 | 
| 40 | 38, 39 | eleq2s 2291 | 
. . . . . . . 8
⊢ ((𝑛 − 1) ∈
(ℤ≥‘𝑀) → (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )) | 
| 41 | 12, 40 | jaoi 717 | 
. . . . . . 7
⊢ ((𝑛 = 𝑀 ∨ (𝑛 − 1) ∈
(ℤ≥‘𝑀)) → (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )) | 
| 42 | 5, 41 | mpcom 36 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ ) | 
| 43 | 42 | ex 115 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑛( · , 𝐹) ⇝ 𝑦 → seq𝑀( · , 𝐹) ∈ dom ⇝ )) | 
| 44 | 43 | adantld 278 | 
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )) | 
| 45 | 44 | exlimdv 1833 | 
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )) | 
| 46 | 45 | rexlimdva 2614 | 
. 2
⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 # 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) → seq𝑀( · , 𝐹) ∈ dom ⇝ )) | 
| 47 | 1, 46 | mpd 13 | 
1
⊢ (𝜑 → seq𝑀( · , 𝐹) ∈ dom ⇝ ) |