ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add12d GIF version

Theorem add12d 7800
Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addd.1 (𝜑𝐴 ∈ ℂ)
addd.2 (𝜑𝐵 ∈ ℂ)
addd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
add12d (𝜑 → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)))

Proof of Theorem add12d
StepHypRef Expression
1 addd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 addd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 addd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 add12 7791 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)))
51, 2, 3, 4syl3anc 1184 1 (𝜑 → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1299  wcel 1448  (class class class)co 5706  cc 7498   + caddc 7503
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-addcom 7595  ax-addass 7597
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-rex 2381  df-v 2643  df-un 3025  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-iota 5024  df-fv 5067  df-ov 5709
This theorem is referenced by:  subsub2  7861  bdtrilem  10849
  Copyright terms: Public domain W3C validator