| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subsub2 | GIF version | ||
| Description: Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| subsub2 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = (𝐴 + (𝐶 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl 8313 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 − 𝐶) ∈ ℂ) | |
| 2 | 1 | 3adant1 1020 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 − 𝐶) ∈ ℂ) |
| 3 | simp1 1002 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 4 | simp3 1004 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) | |
| 5 | simp2 1003 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 6 | subcl 8313 | . . . . 5 ⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 − 𝐵) ∈ ℂ) | |
| 7 | 4, 5, 6 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐶 − 𝐵) ∈ ℂ) |
| 8 | 2, 3, 7 | add12d 8281 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 − 𝐶) + (𝐴 + (𝐶 − 𝐵))) = (𝐴 + ((𝐵 − 𝐶) + (𝐶 − 𝐵)))) |
| 9 | npncan2 8341 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 − 𝐶) + (𝐶 − 𝐵)) = 0) | |
| 10 | 9 | 3adant1 1020 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 − 𝐶) + (𝐶 − 𝐵)) = 0) |
| 11 | 10 | oveq2d 5990 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + ((𝐵 − 𝐶) + (𝐶 − 𝐵))) = (𝐴 + 0)) |
| 12 | 3 | addridd 8263 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + 0) = 𝐴) |
| 13 | 8, 11, 12 | 3eqtrd 2246 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 − 𝐶) + (𝐴 + (𝐶 − 𝐵))) = 𝐴) |
| 14 | 3, 7 | addcld 8134 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐶 − 𝐵)) ∈ ℂ) |
| 15 | subadd 8317 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 − 𝐶) ∈ ℂ ∧ (𝐴 + (𝐶 − 𝐵)) ∈ ℂ) → ((𝐴 − (𝐵 − 𝐶)) = (𝐴 + (𝐶 − 𝐵)) ↔ ((𝐵 − 𝐶) + (𝐴 + (𝐶 − 𝐵))) = 𝐴)) | |
| 16 | 3, 2, 14, 15 | syl3anc 1252 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 − 𝐶)) = (𝐴 + (𝐶 − 𝐵)) ↔ ((𝐵 − 𝐶) + (𝐴 + (𝐶 − 𝐵))) = 𝐴)) |
| 17 | 13, 16 | mpbird 167 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = (𝐴 + (𝐶 − 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 0cc0 7967 + caddc 7970 − cmin 8285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-setind 4606 ax-resscn 8059 ax-1cn 8060 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-sub 8287 |
| This theorem is referenced by: nncan 8343 subsub 8344 subsub3 8346 ppncan 8356 subadd4 8358 subsub2d 8454 |
| Copyright terms: Public domain | W3C validator |