Step | Hyp | Ref
| Expression |
1 | | funfn 5228 |
. 2
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
2 | | elpreima 5615 |
. . . 4
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵)))) |
3 | | elun 3268 |
. . . . . . 7
⊢ ((𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵) ↔ ((𝐹‘𝑥) ∈ 𝐴 ∨ (𝐹‘𝑥) ∈ 𝐵)) |
4 | 3 | anbi2i 454 |
. . . . . 6
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹‘𝑥) ∈ 𝐴 ∨ (𝐹‘𝑥) ∈ 𝐵))) |
5 | | andi 813 |
. . . . . 6
⊢ ((𝑥 ∈ dom 𝐹 ∧ ((𝐹‘𝑥) ∈ 𝐴 ∨ (𝐹‘𝑥) ∈ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) |
6 | 4, 5 | bitri 183 |
. . . . 5
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) |
7 | | elun 3268 |
. . . . . 6
⊢ (𝑥 ∈ ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵)) ↔ (𝑥 ∈ (◡𝐹 “ 𝐴) ∨ 𝑥 ∈ (◡𝐹 “ 𝐵))) |
8 | | elpreima 5615 |
. . . . . . 7
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ 𝐴) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴))) |
9 | | elpreima 5615 |
. . . . . . 7
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ 𝐵) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) |
10 | 8, 9 | orbi12d 788 |
. . . . . 6
⊢ (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (◡𝐹 “ 𝐴) ∨ 𝑥 ∈ (◡𝐹 “ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)))) |
11 | 7, 10 | syl5bb 191 |
. . . . 5
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)))) |
12 | 6, 11 | bitr4id 198 |
. . . 4
⊢ (𝐹 Fn dom 𝐹 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵)) ↔ 𝑥 ∈ ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵)))) |
13 | 2, 12 | bitrd 187 |
. . 3
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ (𝐴 ∪ 𝐵)) ↔ 𝑥 ∈ ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵)))) |
14 | 13 | eqrdv 2168 |
. 2
⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ (𝐴 ∪ 𝐵)) = ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵))) |
15 | 1, 14 | sylbi 120 |
1
⊢ (Fun
𝐹 → (◡𝐹 “ (𝐴 ∪ 𝐵)) = ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵))) |