| Step | Hyp | Ref
| Expression |
| 1 | | funfn 5289 |
. 2
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
| 2 | | elpreima 5684 |
. . . 4
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵)))) |
| 3 | | elun 3305 |
. . . . . . 7
⊢ ((𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵) ↔ ((𝐹‘𝑥) ∈ 𝐴 ∨ (𝐹‘𝑥) ∈ 𝐵)) |
| 4 | 3 | anbi2i 457 |
. . . . . 6
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹‘𝑥) ∈ 𝐴 ∨ (𝐹‘𝑥) ∈ 𝐵))) |
| 5 | | andi 819 |
. . . . . 6
⊢ ((𝑥 ∈ dom 𝐹 ∧ ((𝐹‘𝑥) ∈ 𝐴 ∨ (𝐹‘𝑥) ∈ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) |
| 6 | 4, 5 | bitri 184 |
. . . . 5
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) |
| 7 | | elun 3305 |
. . . . . 6
⊢ (𝑥 ∈ ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵)) ↔ (𝑥 ∈ (◡𝐹 “ 𝐴) ∨ 𝑥 ∈ (◡𝐹 “ 𝐵))) |
| 8 | | elpreima 5684 |
. . . . . . 7
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ 𝐴) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴))) |
| 9 | | elpreima 5684 |
. . . . . . 7
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ 𝐵) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) |
| 10 | 8, 9 | orbi12d 794 |
. . . . . 6
⊢ (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (◡𝐹 “ 𝐴) ∨ 𝑥 ∈ (◡𝐹 “ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)))) |
| 11 | 7, 10 | bitrid 192 |
. . . . 5
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)))) |
| 12 | 6, 11 | bitr4id 199 |
. . . 4
⊢ (𝐹 Fn dom 𝐹 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵)) ↔ 𝑥 ∈ ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵)))) |
| 13 | 2, 12 | bitrd 188 |
. . 3
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ (𝐴 ∪ 𝐵)) ↔ 𝑥 ∈ ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵)))) |
| 14 | 13 | eqrdv 2194 |
. 2
⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ (𝐴 ∪ 𝐵)) = ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵))) |
| 15 | 1, 14 | sylbi 121 |
1
⊢ (Fun
𝐹 → (◡𝐹 “ (𝐴 ∪ 𝐵)) = ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵))) |