ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unpreima GIF version

Theorem unpreima 5610
Description: Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
unpreima (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))

Proof of Theorem unpreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfn 5218 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 elpreima 5604 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ (𝐴𝐵)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵))))
3 elun 3263 . . . . . . 7 ((𝐹𝑥) ∈ (𝐴𝐵) ↔ ((𝐹𝑥) ∈ 𝐴 ∨ (𝐹𝑥) ∈ 𝐵))
43anbi2i 453 . . . . . 6 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵)) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ∈ 𝐴 ∨ (𝐹𝑥) ∈ 𝐵)))
5 andi 808 . . . . . 6 ((𝑥 ∈ dom 𝐹 ∧ ((𝐹𝑥) ∈ 𝐴 ∨ (𝐹𝑥) ∈ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
64, 5bitri 183 . . . . 5 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
7 elun 3263 . . . . . 6 (𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵)) ↔ (𝑥 ∈ (𝐹𝐴) ∨ 𝑥 ∈ (𝐹𝐵)))
8 elpreima 5604 . . . . . . 7 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹𝐴) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴)))
9 elpreima 5604 . . . . . . 7 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹𝐵) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
108, 9orbi12d 783 . . . . . 6 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐹𝐴) ∨ 𝑥 ∈ (𝐹𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))))
117, 10syl5bb 191 . . . . 5 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))))
126, 11bitr4id 198 . . . 4 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ (𝐴𝐵)) ↔ 𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵))))
132, 12bitrd 187 . . 3 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹 “ (𝐴𝐵)) ↔ 𝑥 ∈ ((𝐹𝐴) ∪ (𝐹𝐵))))
1413eqrdv 2163 . 2 (𝐹 Fn dom 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))
151, 14sylbi 120 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∪ (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1343  wcel 2136  cun 3114  ccnv 4603  dom cdm 4604  cima 4607  Fun wfun 5182   Fn wfn 5183  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator