| Step | Hyp | Ref
 | Expression | 
| 1 |   | funfn 5288 | 
. 2
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) | 
| 2 |   | elpreima 5681 | 
. . . 4
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵)))) | 
| 3 |   | elun 3304 | 
. . . . . . 7
⊢ ((𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵) ↔ ((𝐹‘𝑥) ∈ 𝐴 ∨ (𝐹‘𝑥) ∈ 𝐵)) | 
| 4 | 3 | anbi2i 457 | 
. . . . . 6
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵)) ↔ (𝑥 ∈ dom 𝐹 ∧ ((𝐹‘𝑥) ∈ 𝐴 ∨ (𝐹‘𝑥) ∈ 𝐵))) | 
| 5 |   | andi 819 | 
. . . . . 6
⊢ ((𝑥 ∈ dom 𝐹 ∧ ((𝐹‘𝑥) ∈ 𝐴 ∨ (𝐹‘𝑥) ∈ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) | 
| 6 | 4, 5 | bitri 184 | 
. . . . 5
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) | 
| 7 |   | elun 3304 | 
. . . . . 6
⊢ (𝑥 ∈ ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵)) ↔ (𝑥 ∈ (◡𝐹 “ 𝐴) ∨ 𝑥 ∈ (◡𝐹 “ 𝐵))) | 
| 8 |   | elpreima 5681 | 
. . . . . . 7
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ 𝐴) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴))) | 
| 9 |   | elpreima 5681 | 
. . . . . . 7
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ 𝐵) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) | 
| 10 | 8, 9 | orbi12d 794 | 
. . . . . 6
⊢ (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (◡𝐹 “ 𝐴) ∨ 𝑥 ∈ (◡𝐹 “ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)))) | 
| 11 | 7, 10 | bitrid 192 | 
. . . . 5
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵)) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∨ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)))) | 
| 12 | 6, 11 | bitr4id 199 | 
. . . 4
⊢ (𝐹 Fn dom 𝐹 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ (𝐴 ∪ 𝐵)) ↔ 𝑥 ∈ ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵)))) | 
| 13 | 2, 12 | bitrd 188 | 
. . 3
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ (𝐴 ∪ 𝐵)) ↔ 𝑥 ∈ ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵)))) | 
| 14 | 13 | eqrdv 2194 | 
. 2
⊢ (𝐹 Fn dom 𝐹 → (◡𝐹 “ (𝐴 ∪ 𝐵)) = ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵))) | 
| 15 | 1, 14 | sylbi 121 | 
1
⊢ (Fun
𝐹 → (◡𝐹 “ (𝐴 ∪ 𝐵)) = ((◡𝐹 “ 𝐴) ∪ (◡𝐹 “ 𝐵))) |